期刊文献+

基于不变矩的机器视觉车辆类型识别技术 被引量:4

Research on Vehicle Type Recognition by Computer Vision Based on Invariant Moments
在线阅读 下载PDF
导出
摘要 针对智能交通领域汽车类型识别的应用背景,利用单目视觉开发了基于计算机视觉车辆类型识别系统;论述了单目视觉原理及特征提取的关键技术,利用不变矩及不变矩矢量在图像平移、旋转及比例变换时保持不变的特性,以其作为主要特征实现车辆类型有效识别。试验结果表明,该技术可以实现车辆类型的自动、快速和准确分类。 Based on the application of vehicle type recognition in intelligent traffic fields, a vehicle type recognition system based on computer was developed, adopting the technique of monocular vision. The key techniques of monocular vision and feature ex- traction were discussed. The recognition of vehicle type is achieved by applying invariant moment and invariant moment vector, which keep invariant when the image is in different position, orientation and scale. It has been tested that the system can recognize vehicle types automatically and accurately in a quick way.
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2007年第4期7-10,共4页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 吉林省自然科学基金资助项目(20030531-1) 教育部博士点基金资助项目(20030183032)
关键词 智能交通 计算机视觉 不变矩 不变矩矢量 车辆类型识别 intelligent traffic computer vision invariant moments invariant moment vector vehicle type recognition
作者简介 翟乃斌(1978-),男,山东莱芜人,吉林大学交通学院博士研究生.
  • 相关文献

参考文献9

二级参考文献43

  • 1杜宗岗,卢凌,梁军,李晟,杨顺辽.基于知识的航空图像中大型水上桥梁目标识别[J].武汉理工大学学报(交通科学与工程版),2005,29(2):230-233. 被引量:13
  • 2章毓晋.图像处理与分析[M].北京:清华大学出版社,2000..
  • 3[1]Otsu N. A threshold selection method from gray-level histogram [J]. IEEE Trans Actions on SMC, 1979 (9):652~655.
  • 4[2]Kapur J N,Sahoo P K,Wong AKC. A new method for gray-level picture thresholding using the entropy of the histogram [J]. Computer Vision, Graphic sand Image Processing, 1985 (29): 273~285.
  • 5Wu Dayong, Wei Ping, Hou Chaozhen. Measuring the Condition of Parking Lot by Image Processing. Journal of Beijing Institute of Technology, 1999, Vol. 8, No. 3
  • 6Finch I,Antonaeopoulos A. Identification airfield runways in synthetic aperture radar images. Pattern Recognition,1998,2(4):1 633-1 636.
  • 7Shin C, Yun U, Kim H, Park S. A hybrid approach of neural network and memory-based learning to data mining. IEEE Trans. on Neural Networks, 2000, 11(3): 637 - 46.
  • 8Wettschereck D, Aha D W, Mohri T. A review and empirical evaluation of feature weighting metbords for a class of lazy learning algorithms. AI Review, 1997, 11 (2): 273 - 314.
  • 9范明 孟小峰.数据挖掘概念与技术:第七章第七节[M].北京:机械工业出版社,2001..
  • 10Kuncheva L I. Fitness Functions in Editing k-nn Reference Set by Genetic Algorithms. Pattern Recognition, 1997, 30(6):1041 - 1049.

共引文献92

同被引文献19

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部