期刊文献+

基于神经网络集成的入侵检测方法的研究 被引量:3

Research on Intrusion Detection Method Based on Neural Network Ensemble
在线阅读 下载PDF
导出
摘要 针对目前入侵检测中存在的误检率高、对新的入侵方法不敏感等问题,提出了一种基于神经网络集成的入侵检测方法。使用负相关法训练神经网络集成,采用tf×idf的系统调用编码方式作为输入。实验结果表明,与单神经网络方法相比,神经网络集成弥补了神经网络方法在检测数据上的不足,在保证较高的入侵检测率的前提下,保持了较低的误检率。 For the problem of high false-positive rate and not sensitive to new intrusion method existed in the intrusion detection, a new intrusion detection method based on neural network ensemble is proposed. It trains the neural network ensemble with negative correlation learning method, uses tfxidf(term frequency xinverse document frequency)system calls encoded mode as the input. The experimental results indicate that, compared with ANN, neural network ensemble improv the performance of ANN in the data analysis, keeps high detection rate and low false-positive rate.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第8期152-153,156,共3页 Computer Engineering
关键词 入侵检测 神经网络集成 负相关学习 Intrusion detection Neural network ensemble Negative correlation learning
作者简介 巩文科(1975-),男,硕士生,主研方向:人工智能,计算机网络通信研究;E-mail:gy_em@163.com 李心广,教授; 赵洁,硕士生
  • 相关文献

参考文献5

二级参考文献34

  • 1S Forrest, et al. A sense af seaf for unix processes[A]. John McHugh IEEE Symposium on Security and Privacy, Proceedings[C]. Oakland CA:IEEE Computer Society Press, 1996.120 - 128.
  • 2A P Kosoresow, S A Hofmey. Intrusion detection via system call traces[J]. IEEE Software, 1997,14(5) :35 - 42.
  • 3W Lee, et al. Learning patteans from UNIX process execution traces forintrusion detection [A ]. AAAI Wodtshop on AI Approaches to Fraud Detection and Risk Management [C ]. Rhode laland: AAAI Press,1997.50 - 56.
  • 4M Asaka, et al. A new intrusion detection method based on discriminant analysis [J]. IEICE Tram. on Information & Systems, 2001, E-84-B(5) :570 - 577.
  • 5Yihua Liao, V Rao Vemuri. Using text categorization techniques for intrusion detection [ A ]. 11th USENIX Security Symposium [ C ]. San.Francisco, 2002.
  • 6H Debar, et al. Fixed vs. Variable-length pattexns for detecting suspicious process behavior [A] .5th European Symposium on Research in Computer Security [ C ]. Belgium: Springer-Verlag, 1998.1 - 15.
  • 7C Michael, A Ghosh. Two state-based approaches to program-based anomaly detection [DB/OL]. www. acsac, org/2000/parpers/96. pdf.
  • 8R Sekar, et al. A fast automaton-tin.seal method for detecting anomalous program behaviors [ A]. Roger Needham,IEEE Symposium on Securityand Privacy [C]. California: IEEK Computer Society Press,2001. 144- 155.
  • 9Aho A V, M J Corasick. Efficient suing matching: an aid to bibliographic search [J] .Communications of the ACM, 1975:333 - 340.
  • 10http://www.cs. unm. edu/- immsec/data [OL].

共引文献77

同被引文献11

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部