期刊文献+

基于支持向量机的说话人识别研究 被引量:3

Study of Speaker Identification Based on Support Vector Machine
在线阅读 下载PDF
导出
摘要 说话人识别技术的研究是智能信息处理的研究热点问题之一。支持向量机是统计学习理论的一个重要学习方法,也是解决模式识别问题的一个有力工具。介绍了模式识别的分类原理,提出基于支持向量机的说话人识别模型。通过把所得到的结果与原有VQ模型的试验结果相比较,表明该方法具有较高的识别准确率。 The study of speaker identification is one of the ad hoc problems in the investigation of intelligence information. Support Vector Machine (SVM) is an important learning method of statistical learning theory,and is also a powerful tool for pattern recognition. In this paper,we introduce the theory of SVM, and then propose a speaker identification model based on SVM. By comparing the results obtained in this paper with those known in terms of the VQ model,it is shown that the method presented in this paper has a better performance in the identification accuracy than traditional method.
作者 赵虹 韦丽华
出处 《现代电子技术》 2007年第6期125-127,共3页 Modern Electronics Technique
基金 辽宁省教育厅教育与发展规划项目(2004F099)
关键词 支持向量机 说话人识别 结构风险最小化 核函数 SVM speaker identification structural risk minimization kernel function
  • 相关文献

参考文献5

二级参考文献5

  • 1[1]Vapnik V.An Overview of Statistical Learning Theory.IEEE Trans. Neural Networks,1999,10(5):988-999
  • 2[2]Pontil M,Verri A.Support Vector Machines for 3D Object Recognition. IEEE Tran. Pattern Analysis and Machine Intelligence,1998,20(6):637
  • 3[3]Burges C J C.A Tutorial on Support Vector Machines for Pattern Recognition.Data Mining and Knowledge Discovery,1998,2:121-167
  • 4[4]Platt J C.Sequential Minimal Optimization:A Fast Algorithm for Training Support Vector Machines.Microsoft Research Tech. Report MSR-TR-98-14,1998-04-21
  • 5Le Cun Y,The Statistical Mechunics Perspective Oh J II,1995年,261页

共引文献51

同被引文献14

  • 1鲍焕军,郑方.GMM-UBM和SVM说话人辨认系统及融合的分析[J].清华大学学报(自然科学版),2008,48(S1):693-698. 被引量:9
  • 2但志平,郑胜.基于最小二乘向量机的说话人识别研究[J].计算机工程与应用,2007,43(7):49-51. 被引量:3
  • 3张振领,徐东平,贾仰理.基于支持向量机的说话人识别研究[J].电脑知识与技术,2007(4):255-255. 被引量:1
  • 4吴朝晖.支持向量机算法的研究及在说话人识别上的应用[D].浙江大学,2002.
  • 5HAUTAMAKI V, KINNUNEN T, KARKKAINEN I. Maximum a posteriori adaptation of the centroid Model for Speaker Verification[J]. IEEE Signal Process. Lett.2008, 15 : 162-165.
  • 6SUYKENS J K, VANDEWALLE J. Least squares support vector machine classifiers[J].Neural Processing Letter, 1999, 9(3):293-300.
  • 7Hautamaki V,Kinnunen T,Karkkainen I.Maximum a posteriori adaptation of the centroid model for speaker verification[J].IEEE Signal Process Lett,2008,15:162-165.
  • 8Campbell W M,Sturim D E,Reynulds D A.Support vector machines using GMM superveetors for speaker verification[J].IEEE Signal Processing Letters,2006,13 (5):308-311.
  • 9龙艳花,郭武,戴礼荣.一种应用于SVM说话者确认系统的新型序列核[C] //第九届全国人机语音通讯学术会议论文集,2007.
  • 10Reynolds D A,Quatieri T F,Dunn R B.Speaker verification using adapted Gaussian mixture models[J].Digital Signal Processing:A Review Journal,2000,10(1):19-41.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部