期刊文献+

基于层次聚类的分层可扩展性编码算法的优化 被引量:4

IMPROVEMENT OF LAYERED SCALABLE CODING ALGORITHM BASED ON LAYER CLUSTERING
在线阅读 下载PDF
导出
摘要 针对视频流接收端带宽不一致所导致的接收质量和带宽利用率不高的问题,利用层次聚类的方法对接收端带宽进行分类,建立了一个基于分层可扩展性编码算法的自适应编码的数学模型,以此确定编码器编码的层数及各层的码流值。该方法对已有的分层可扩展性编码的自适应机制做了优化,提高了接收质量和带宽利用率。 Aiming at the problem of different receiving effects and poor usability of bandwidth resulted from different user's bandwidths, we classify different user's connecting bandwidths and construct an adaptive encoding model based on layered scalable coding algorithm. This model optimizes the existing layered scalable coding algorithm, makes good use of user's connecting bandwidth and improves user's receiving effect.
出处 《计算机应用与软件》 CSCD 北大核心 2007年第2期45-46,52,共3页 Computer Applications and Software
基金 江苏省高校自然科学研究指导性计划项目(05KJD520103)。
关键词 层次聚类 分层可扩展性编码 自适应编码 Layer clustering Layered scalable coding Adaptive encoding
作者简介 吴青,讲师,主研领域:多媒体信息系统。
  • 相关文献

参考文献4

二级参考文献16

  • 1Han J W, Kambr M. Data mining concepts and techniques[M]. Beijing: Higher Education Press, 2001. 145~176.[2]Kaufan L, Rousseeuw P J. Finding groups in data: an introduction to cluster analysis[M]. New York: John Wiley & Sons, 1990.
  • 2Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases[A]. Haas L M, Tiwary A. Proceedings of the ACM SIGMOD International Conference on Management of Data[C]. Seattle: ACM Press, 1998. 73~84.
  • 3Ester M, Kriegel H P, Sander J, et al. A density based algorithm for discovering clusters in large spatial databases with noise[A]. Simoudis E, Han J W, Fayyad U M. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining[C].
  • 4Agrawal R, Gehrke J, Gunopolos D, et al. Automatic subspace clustering of high dimensional data for data mining application[A]. Haas L M, Tiwary A. Proceedings of the ACM SIGMOD International Conference on Management of Data[C]. Seattle: ACM Press, 1998.
  • 5Zhang T,Ramakrishnan R,Livny M. BIRCH:an efficient data clustering method for very large database[R].Computer Sciences Dept,Univ of Wisconsin-Madison,1995.
  • 6Zhang T,Ramakrishnan R,Livny M. BIRCH:an efficient data clustering method for very large databases[A]. Jagadish H V, Mumick I S. Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data[C]. Quebec: ACM Press, 1996.103~114.
  • 7Beyer K S,Goldstein J,Ramakrishnan R,et al. When is 'nearest neighbor' meaningful?[A].Beeri C,Buneman P.Proceedings of the 7th International Conference on Data Theory[C].ICDT'99. LNCS1540,Jerusalem, Israel: Springer, 1999.217~235.
  • 8Karypis G,Han E H,Kumar V. CHAMELEON: a hierarchical clustering algorithm using dynamic modeling[J].IEEE Computer,1999,32(8):68-75.
  • 9候正信 杨喜 王全文.视频处理与通信[M].北京:电子工业出版社,2003..
  • 10ITU - T Rec, H. 323v4 Packet - based multimedia communications systems, 2000,11.

共引文献25

同被引文献36

  • 1林济铿,罗萍萍,曹绍杰,C.M.MAK,K.M.YUNG.基于数据挖掘技术的负荷曲线对故障反应相似性的研究[J].电力系统自动化,2005,29(1):29-33. 被引量:4
  • 2葛喜俊,刘凯,贾传峻,王峰.城市群物流需求网络结构特征分析方法研究[J].物流技术,2007,26(5):1-4. 被引量:8
  • 3刘兴伟,姚书怀.基于层次聚类的语义Web服务发现算法[J].计算机应用与软件,2007,24(7):173-175. 被引量:6
  • 4NASIBOV E N, ULUTAGAY G. A new unsupervised approach for fuzzy clustering[ J]. Fuzzy Sets and Systerms, 2007(158) : 2118-2433.
  • 5WANG Weina, ZHANG Yunjie. On fuzzy cluster validity indices [ J ]. Fuzzy Sets and Systerms, 2007 ( 158 ) : 2095- 2117.
  • 6XU Rui. Survery of clustering alogrithm[ J]. IEEE Transactions on Neural Networks, 2005, 16(3) : 645-678.
  • 7BEZDEK J C. Cluster validity with fuzzy sets [ J ]. J Cybemet, 1974, 3: 58-72.
  • 8BEZDEK J C. Numerical taxonomy with fuzzy sets [J]. J Math Biol,1974(1) : 57-71.
  • 9XIE Xuanlilisa, BENI Gerardo. A validity measure for fuzzy clustering [ J ]. Pattern Recognition, 2002 ( 35 ) : 2267 -2278.
  • 10WU Kuolung, YANG Miinshen. A cluster validity index for fuzzy clustering [ J ]. Pattern Recognition Letter, 2005, 26: 1275-1291.

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部