期刊文献+

基于神经网络混沌吸引子的公钥密码算法安全性分析及其实现 被引量:7

Security Analysis of Public-key Cryptography Based on Chaotic Attractors of Neural Networks and Its Implementation
在线阅读 下载PDF
导出
摘要 介绍一种基于神经网络混沌吸引子的Diffie-Hellman公钥密码算法.在过饱和贮存的Hopfield神经网络模型中混沌吸引子与初始状态之间存在一种单向函数关系,如果改变该神经网络的联结权矩阵,混沌吸引子及其所应的初始状态吸引域会随之发生改变.因此,我们可以其联结权矩阵为陷门,利用可交换的随机变换矩阵来改变神经网络的联结权矩阵,实现一种新的Diffie-Hellman公钥加密算法,即将随机变换矩阵作为私钥,而将变换后的神经网络联结突触矩阵作为公钥.为了说明这种新公钥加密方案的实用性,本文还分析和讨论其安全性和加密效率,并利用Java编程实现互联网的应用方案.实验结果表明,本算法是可行的,并具有较高的数据加密和解密速度. A new public-key cryptography based on chaotic attractors of neural networks is described in the paper. There is a oneway function between chaotic attractors and initial states in an Overstoraged Hopfield Neural Network (OHNN). If the neural synaptic matrix is changed with permutation operations, each attractor and its corresponding domain of attraction are simultaneously changed too. So we regard the neural synaptic matrix as a trap door and change it using commutative random permutation matrix. A new cryptography technique according to Diffie-Hellman public-key cryptosystem can be implemented. In the pew scheme,the random permutation operation of the neural synaptic matrix is regarded as the secret key, while the neural synaptic matrix after permutation is regarded as public key. In order to explain the practicality of the proposed scheme, security and encryption efficiency of the new scheme are analyzed and discussed. The application scheme for Internet based on the proposed cryptography is implemented by using Java program. The experimental results show that the proposed cryptography is feasible and has a higher performance of eneryption and decryption speed.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期187-193,共7页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(69886002 60076015) 福建省自然科学基金(2006J0408) 福建省青年创新基金(2005J034) 福建省教育厅科技项目(JA05293) 集美大学优秀青年骨干教师基金(2006B003)资助
关键词 神经网络 公钥密码体制 混沌吸引子 矩阵分解 neural networks public-key eryptosystem chaotic attractor, matrix decomposition
作者简介 通讯作者:dhguo@xmu.edu.cn
  • 相关文献

参考文献16

  • 1Diffie W,Hellman M.New directions in cryptography[J].IEEE Transactions on Information Theory,1976,IT-22(6):644-654.
  • 2William Stallings.Cryptography and network security:principles and practice[M].2nd.New Jersey:Prentice Hall Inc.,2003.
  • 3Hellman M E.An overview of public key cryptography[J].IEEE Communications Magazine,2002,40(5):42-49.
  • 4郭东辉,吕迎阳,刘瑞堂,吴伯僖.神经网络及其在网络通讯中的应用研究[J].厦门大学学报(自然科学版),2001,40(2):283-292. 被引量:10
  • 5齐锐,张大力,阎平凡.基于神经网络的对称密码系统[J].清华大学学报(自然科学版),2001,41(9):89-93. 被引量:12
  • 6Crounse K R,Yang T,Chua L O.Pseudo-random sequence generation using the CNN universal machine with applications to cryptography[C]//Proceedings of the IEEE International Workshop on Cellular Neural Networks and Their Applications.Piscataway:IEEE,1996:433-438.
  • 7Veljko Milanovic,Mona E Zaqhloul.Synchronization of chaotic neural networks for secure communications[C]//IEEE International Symposium on Circuits and Systems.Piscataway:IEEE,1996:28-31.
  • 8Donghui Guo,Cheng L M,Cheng L L.A new symmetric probabilistic encryption scheme based on chaotic attractors of neural networks[J].Applied Intelligence,1999,10(1):71-84.
  • 9Gardner E.Maximum storage capacity in neural networks[J].Europhys Lett,1987,4(4):481-485.
  • 10Liu Niansheng,Guo Donghui.A new public-key cryptography based on chaotic attractors of neural networks[C]//Progress in Intelligence Computation.Wuhan:China University of Geosciences,2005:293-300.

二级参考文献27

共引文献71

同被引文献41

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部