期刊文献+

基于节点敏感性分析的无网格法节点布置研究 被引量:2

Study of meshless nodes distribution on the basis of nodal sensitivities analysis
在线阅读 下载PDF
导出
摘要 在应用无网格法进行数值计算时,由于节点的布置对于计算结果的精度有直接影响,因此节点布置方案以及节点性态特点是无网格法中的研究重点。把有限元和形状优化设计中的节点敏感性这一概念应用于无网格法,选择势能密度作为响应变量对无网格法中的节点进行敏感性分析,得到了节点布置方案与节点敏感性系数之间的关系。通过悬臂梁的数值算例,说明了该方法能够有效地指导并改进节点布置方案,使计算精度明显提高。 In the meshless numerical calculation, nodes distribution directly affects the precision of meshless method. So nodes distribution and characters of nodes are emphasis and difficulty of meshless method. On the basis of nodal sensitivities in finite element method and shape optimization, the sensitivity analysis was used to study nodal arranging scheme in meshless method. By choosing potential energy density as response quantities, calculating nodal sensitivities modulus, the relation between sensitivity modulus and nodal distribution scheme was gotten. The case was given. The results show that the meshless method can guide and improve the nodal distribution scheme effectively. The precision of the calculation was improved.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第1期95-99,共5页 Journal of China University of Petroleum(Edition of Natural Science)
关键词 无网格法 移动最小二乘法 节点敏感性系数 响应变量 节点布置 meshless method moving least-square method nodal sensitivities modulus response quantities nodes distribution
作者简介 署恒木(1957-),男(汉族),山东东阿人,教授,主要从事工程力学的教学与科研工作。
  • 相关文献

参考文献11

  • 1LIU W K.Moving least square reproduce kernel method (Part Ⅰ):methodology and convergence[J].Computer Methods in Applied Mechanics Engineering,1997,143(10):422-433.
  • 2THEODORE Sussman,BATHE K J.The gradient of the finite element variational indicator with respect to nodal point coordinates:an explicit calculation and applications in fracture mechanics and mesh optimization[J].International Journal for Numerical Methods in Engineering,1985,21 (6):763-774.
  • 3HENNEBERGER G.Sensitivity analysis of nodal position in adaptive refinement of finite element mesh[J].IEEE:Trans Magn,1990,26 (8):787-790.
  • 4WANG Shu-yu,SUN Yan-bing,GALLAGHER R H.Sensitivity analysis in shape optimization of continuum structure[J].Computer and Structures,1985,20 (2):855-867.
  • 5PAULINO G H,SIFT E,MUKHERJEEAND S P.Nodal sensitivities as error estimates in computational mechanics[J].Acta Mechanica,1997,121:191-213.
  • 6张钧强,罗先启.关于无网格法节点布置方案的研究和探讨[J].三峡大学学报(自然科学版),2005,27(3):237-240. 被引量:1
  • 7张雄,刘岩.无网格法[M].北京:清华大学出版社,2005 1-94.
  • 8娄路亮,曾攀.双材料界面裂纹应力强度因子的无网格分析[J].航空材料学报,2002,22(4):31-35. 被引量:37
  • 9张选兵.[D].武汉:中科院武汉岩土力学研究所,1997.
  • 10CHUNG Heungjin.Adaptive nodal generation with element-free galerkin method[J].Structural Engineering and Mechanics,2000,10 (6):635-650.

二级参考文献27

  • 1吴永礼.计算固体力学[M].北京:科学出版社,2003,4.258-297.
  • 2Liu W K. Moving Least Square Reproduce KernelMethod. Part Ⅰ: Methodology and Convergence [J].Computer Methods in Applied Mechanics Engineering,1997,143(10) :422~433.
  • 3Richard Franke. Scattered Data Interpolation: Tests of some Methods, Mathematics of Element-free Galerkin Methods for Diffusion Problems [J]. Computers and Structures, 2000,77(6):171~183.
  • 4Theodore Sussman, Bathe K J. The Gradient of the Finite Element Variational Indicator with Respect to NodalPoint co-ordinates: an Explicit Calculation and Applications in Fracture Mechanics and Mesh Optimization[J].International Journal for Numerical Methods in Engineering, 1985,21 (6) :763~774.
  • 5Henneberger G. Sensitivity Analysis of Nodal Positionin Adaptive Refinement of Finite Element Mesh [J].IEEE:Trans Magn,1990,26(8) :787~790.
  • 6Wang Shuyu, Sun Yan bing, Gallagher R H. Sensitivity Analysis in Shape Optimization of Continuum Structure [J]. Computer and Structures, 1985,20(2):855~867.
  • 7Richard Franke.Scattered Data Interpolation:Tests of some Methods[J].Mathematics of Computation,1982,38(6):181~200.
  • 8张选兵.[D].武汉:中科院武汉岩土力学研究所,1997.
  • 9Chung Heungjin.Adaptive Nodal Generation with the Element—free Galerkin Method [J].Structural Engineering and Mechanics,2000,10(6):635~650.
  • 10Batina J T. A gridless Euler/Navier-Stokes solution algorithm for complex-aircraft applications[R]. AIAA Paper 93-0333,1993.

共引文献54

同被引文献28

  • 1朱合华,叶勇庚,李晓军,蔡永昌.任意形状区域的自动布点技术[J].工程力学,2004,21(5):94-99. 被引量:3
  • 2刘红生,杨玉英,李晶.无网格法中节点非均匀自动布置及背景网格生成[J].岩土力学,2007,28(1):201-205. 被引量:4
  • 3李玉坤,姚军,黄朝琴,张喜君.油藏渗流问题的无网格法分析[J].中国石油大学学报(自然科学版),2007,31(2):95-99. 被引量:4
  • 4张姝慧,汪继文.SPH法中初始时粒子配置的分析[J].计算机技术与发展,2007,17(6):36-38. 被引量:5
  • 5张雄,刘岩.无网格法[M].北京:清华大学出版社,2005 1-94.
  • 6BELYTSCHKO T, KRONGAUZ Y, ORGAN D, et al. Meshless methods: an overview and recent developpments[J]. Comput Methods Appl Mech Engrg, 1996, 139:3-47.
  • 7GINOGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and applications to non-spherical stars[ J]. Mon Not Roy Astrou Soc, 1977,18:375-389.
  • 8NAYROLES B, TOUZOT G, VILLON P. Generalizing the finite element method: diffuse approximation and diffuse elements [ J ]. Comput Mech, 1992,10: 307-318.
  • 9BELYTSCHKO T, LU Y Y, GU L. Element free Galerkin methods[J]. Int J Num Meth Engrg, 1994,37:229- 256.
  • 10LIU W K, JUN S, ZHANG Y F. Reproducing Kernel particle methods[J]. Int J Numer Meth Engrg, 1995, 20 : 1 081-1 106.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部