摘要
该文主要目的是研究随机粗糙面SAR回波信号的统计特性。结合传统的MonteCarlo方法,利用多层快速多极子算法严格高效地模拟了三维随机粗糙面的SAR回波信号。依据常用SAR系统,将发射波的仰角固定在45°,并让方位角在88°~92°之间变化,得到若干组随机表面的回波。计算回波幅值和相位的均值,得到一些值得关注的结论。
The principal objective of the present work is to investigate the statistic properties of SAR return signals. The Synthetic Aperture Radar (SAR) return signals from 3-dimensional Gauss random rough conducting surfaces is efficiently and accurately computed using Multi-Level Fast Multipole Algorithm (MLFMA) combined with traditional Monte Carlo method. According to the real situation of SAR, incidents' elevation angles are fixed at 45°, and relevant azimuth angles vary from 88° to 92°. Return signals are divided into several groups in terms of geometry coefficients. Then the statistic properties of these obtained signals are investigated by computing the means of return signals' amplitudes and phases. Several useful conclusions are acquired.
出处
《电子与信息学报》
EI
CSCD
北大核心
2007年第2期489-491,共3页
Journal of Electronics & Information Technology
基金
国家自然科学基金(60371004)
国家重点基础研究发展规划(973计划)项目(2005CB321702)资助课题
关键词
SAR回波
随机面
多层快速多极子技术
SAR return signals
Random surface
Multi-Level Fast Multipole Algorithm (MLFMA)
作者简介
潘小敏:男,1978年生,博士生,研究方向为计算电磁学和目标特性.
盛新庆:男,1968年生,教授,博士生导师,主要研究方向为计算电磁学、目标特性、微波传感与仿真技术、天线分析与设计等.