期刊文献+

基于最大熵原则和灰度变换的图像增强 被引量:7

Image enhancement based on maximum entropy principle and gray-level transformation
在线阅读 下载PDF
导出
摘要 提出了一种利用最大熵原则和灰度变换进行图像对比度增强的方法。在最大熵原则基础上利用条件迭代算法对图像灰度级进行最佳分类,对各分类区域进行相应的灰度变换,根据不同需要选取变换参数,在图像对比度增强同时各区域均衡性也得到很大改善。将利用条件迭代算法计算最大熵多阈值的方法与最小均方误差(LMSE)计算多阈值的方法进行比较,实验结果表明,文中所用方法在迭代次数上大大低于基于最小均方误差算法所需迭代次数,节省了图像处理时间,图像均衡化效果也相对提高。 An image contrast enhancement method based on maximum entropy principle and gray-level transformation was proposed. According to the maximum entropy principle, the image gray levels were classified optimally by iterated conditional modes, and the transformation parameters were selected to enhance the image contrast and improve region homogenization. The method of iterated conditional modes was compared with Least Mean Square Error (LMSE) method in computing multi-thresholds, The experiment result demonstrates that compared with LMSE, the proposed method spends less time and acquires greater image region homogenization result,
出处 《光电工程》 EI CAS CSCD 北大核心 2007年第2期84-87,119,共5页 Opto-Electronic Engineering
关键词 图像增强 最大熵原则 灰度变换 区域均衡 Image enhancement Maximum entropy principle Gray-level transformation Region homogenization
作者简介 章秀华(1976-),女(汉族).湖北天门人.博士生.主要从事光电信息检测及光电图像处理.E-mail:amyyzxh@sina.com.
  • 相关文献

参考文献5

  • 1V.CASELLES,J.L.LISANI,J.M.MOREL,et al.Shape preserving local histogram modification[J].IEEE Trans.on Image Processing,1998,8(2):220-230.
  • 2王炳健,刘上乾,周慧鑫,李庆.基于平台直方图的红外图像自适应增强算法[J].光子学报,2005,34(2):299-301. 被引量:103
  • 3A.RJI,A.THAIBAOUI.A gray-level transformation-based method for image enhancement[J].Pattern Recognition Letters,1998,19(13):1207-1212.
  • 4Xi-ping LUO,Jie TIAN.ICM method for multi-level thresholding using maximum entropy criterion[A].Proceedings.International Conference on Image Analysis and Processing[C].Venice,Italy:IEEE,1999.108-113.
  • 5SAHOO P.K,SOLTANI S,WONG A.K.C,et al.A survey of thresholding techniques[J].CVGIP,1988,41(2):233-260.

二级参考文献6

共引文献102

同被引文献60

引证文献7

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部