期刊文献+

二维最大散度差图像投影鉴别分析 被引量:7

Two-dimensional Maximum Scatter Difference Image Projection Discriminant Analysis
在线阅读 下载PDF
导出
摘要 提出了一种新的二维散度差图像投影鉴别分析方法。该方法利用类间离散度与类内离散度之差作为鉴别准则,从根本上避免了传统的Fisher线性鉴别分析所遇到的小样本问题时。所提出的方法是直接基于图像矩阵的,与以往的基于图像向量的鉴别方法相比,它的突出优点是大大提高了特征抽取的速度。在ORL人脸数据库和AR标准人脸库上的仿真试验结果表明,所提出的方法不仅在识别性能上优于传统的散度差鉴别分析,特征抽取的速度有了较大幅度的提高。 A novel image projection discriminant analysis based on scatter difference criterion was developed for image feature extraction. The proposed one adopts the difference of both between-class scatter and within-class scatter as discriminant criterion, In such a way, the small sample size problem occurred in traditional Fisher discriminant analysis is in nature avoided. In addition, the construction of scatter matrices is directly based on original training image matrices rather than vectors. It is not necessary to convert the image matrix into high-dimensional image vector like those previous linear discriminant methods so that much computational time would be saved if using the proposed method for feature extraction. Finally, extensive experiments were performed on ORL face database and AR face database. The experimental results indicate that the proposed method outperforms the traditional scatter difference discriminant analysis in recognition performance. And, the speed for feature extraction is greatly improved.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第4期833-835,913,共4页 Journal of System Simulation
基金 国家自然科学基金(60472060) 江苏省博士后科研资助计划项目 江苏省高校自然科学基金(05KJB520152)
关键词 散度差鉴别准则 图像矩阵 图像投影鉴别分析 人脸识别 scatter difference diseriminant criterion image matrix image projection discriminant analysis face recognition
作者简介 陈才扣(1967),男,江苏姜堰,博士,副教授,研究方向为模式识别理论与应用、生物特征识别; 刘永俊(1981),男,山东青岛,硕士生; 杨静宇(1941),男,河北秦皇岛,教授,博导,研究方向为模式识别与智能系统。
  • 相关文献

参考文献9

  • 1Duda R O, P E Hart, D G. Stork. Pattern Classification (second) [M].New York: John Wiley & Sons, 2000.
  • 2Belhumeur P N, Hespanha Joao P, Kriegman David J. Eigenfaces vs.Fisherfaces: Recognition using class specific linear projections [J].IEEE Trans. Pattern Anal. Machine Intell (S0162-8828), 1997, 19(7):711-720.
  • 3Hong Z Q, Yang J Y. Optimal discriminant plane for a small number of samples and design method of classifier on the plane [J]. Pattern Recognition (S0031-3203), 1991, 24(4): 317-324.
  • 4Liu K, Yang J Y. An efficient algorithm for Foley-sammon optimal set of discriminant vectors by algebranic method [J]. International Journal of Pattern Recognition and Artificial Intelligence (S0162-8828), 1992, 6(5): 817-829.
  • 5金忠,杨静宇,陆建峰.一种具有统计不相关性的最佳鉴别矢量集[J].计算机学报,1999,22(10):1105-1108. 被引量:51
  • 6扬健.线性投影分析的理论与算法及其在特征抽取中的应用研究[D].南京:南京理工大学,2002.
  • 7Yang Ban, Zhang David, Yang J Y, et al. Two-dimensional PCA: a new approach to appearance-based face representation and recognition [J]. IEEE Trans. Pattern Anal. Machine Intell(S0162-8828), 2004, 26(1): 131-137.
  • 8Yang Jian, Yang J Y. From image vector to matrix: a straightforward image projection IMPCA vs. PCA [J]. Pattern Recognition(S0031-3203), 2002, 35(9): 1997-1999.
  • 9宋枫溪,程科,杨静宇,刘树海.最大散度差和大间距线性投影与支持向量机[J].自动化学报,2004,30(6):890-896. 被引量:58

二级参考文献6

  • 1Fisher R A. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 1936, 7: 179-188
  • 2Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995
  • 3Foley D H, Sammon J W. An optimal set of discriminant vectors. IEEE Transactions on Computer, 1975,24(3): 281-289
  • 4Jin Z, Yang J Y, Hu Z S, Lou Z. Face Recognition based on uncorrelated discriminant transformation. Pattern Recognition, 2001, 34(7): 1405-1416
  • 5Bian Zhaoqi, Zhang Xuegong. Pattern Recognition. Beijing: Qinghua University Press, 2000 (in Chinese)
  • 6Hsu C, Lin C, A Comparison of Methods for Multiclass Support Vector Machines. IEEE Transaction on Neural Networks, 2002, 13(2): 415-425

共引文献102

同被引文献52

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部