期刊文献+

超立方体的渐近性质

Asymptotic Properties of Hypercubes
在线阅读 下载PDF
导出
摘要 设K Rn是超立方体,主要研究关于超立方体内随机单形的两个仿射不变量m2(K)、S2(K)的渐近性质.作为方法的应用,得到了质心在原点体积为1的超平行体的迷向常数LK. Let K be a hypereube in Rn. The asymptotic properties of two affine invariant m2 (K) and S2 (K) of a random simplex inside K are studied. As an application of the method, the isotropic constant Lk of parallelotope with volume | K| = 1 and center of mass at the origin is obtained.
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第1期33-36,共4页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(10671119)
关键词 凸体 超立方体 超平行体 迷向常数 西尔维斯特问题 convex body hypercube parallelotope isotropic constant Sylvester's problem
作者简介 通信作者:何斌吾(1957-),男,副教授,副博士生导师,博士,研究方向为凸几何、几何分析.E-mail:hebinwu@staff.shu.edu.cn
  • 相关文献

参考文献9

  • 1MILMAN V D,PAJOR A.Isotropic position and inertia ellipsolids and zonoids of the unit ball of a normed ndimensional space[C]//Geometric Aspects of Functional Analysis (1987-1988).Lecture Notes in Math 1376.Berlin:Springer,1989:64-104.
  • 2GIANNOPOULOS A.Notes on isotropic convex bodies[R].Institute of Mathematic Polish Academy of Science Warsaw,2003.
  • 3BLASCHKE W.(U)ber affine geometry ⅩⅣ:eine minimum aufgabe für legendres tr(a)gheits ellipsoid[M].Ber verh s(a)chs Akad d Wiss,1918,70:72-75.
  • 4BLASCHKE W.(U)ber affine geometry Ⅺ:l(o)sing der"Vierpunkproblems"von sylvester aus der teorie der geometrischen wahrsdeinlichkeiten[M].Leipziger Berichte,1917,69:436-453.
  • 5JOHN F.Polar correspondence with respect to convex regions[J].Duke Math J,1937,3(2):355-369.
  • 6LUTWAK E,YANG D,ZHANG G.A new ellipsoid associated with convex bodies[J].Duke Math J,2000,104:375-390.
  • 7BOURGAIN J.On the distribution of polynomials on high dimensional convex sets[C]//Geometric Aspects of Functional Analysis (1989-1990).Lecture Notes in Math.Springer,1991,1469:127-137.
  • 8DAR S.Remarks on Bourgain's problem on slicing of convex bodies[C]//Geometric Aspects of Functional Analysis.Oper Theory Adv Appl.Birkh(a)user,1995,77:61-66.
  • 9何斌吾,冷岗松.迷向体与Bourgain问题[J].中国科学(A辑),2005,35(4):450-462. 被引量:12

二级参考文献18

  • 1Milman V D, Pajor A. Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. In: Geometric Aspects of Functional Analysis (1987-1988). Lecture Notes in Math,Vol 1376. Berlin: Springer, 1989.64~104.
  • 2Blaschke W. Uber affine Geometry ⅩⅣ: eine minimum Aufgabe für Legendres tragheits Ellipsoid. Ber verh sachs Akad d Wiss, 1918, 70:72~75.
  • 3Schneider R. Convex Bodies: The Brunn-Minkowski Theory. Cambridge: Cambridge University Press,1993.
  • 4Lindenstrauss J, Milman V D. Local theory of normed space and convexity. In: Gruber P M, Wills J M,eds. Handbook of Convex Geometry. Amesterdam: North-Holland, 1993.
  • 5John F. Extremum problems with inequalities as subsidiary conditions. In: Courant Anniversary Volume.New York: Intersience, 1948. 187~204.
  • 6Giannopoulos A A, Milman V D. Extremal problems and isotropic positions of convex bodies. Israel J Math, 2000, 117:29~60.
  • 7Brehm U, Hinow P, Vogt H, et al. Moment inequalities and central limit properties of isotropic convex bodies. Math Z, 2002, 240:37~51.
  • 8Ball K. An Elementary Introduction to Modem Convex Geometry. Flavors of Geometry MSRI Pubilications, Vol 31. Cambridge: Cambridge University Press, 1997. 1~58.
  • 9Blaschke W. Uber affine Geometry Ⅺ: losing der "Vierpunkproblems" von Sylvester aus der Teorie der geometrischen Wahrsdeinlichkeiten. Leipziger Berichte, 1917, 69:436~453.
  • 10John F. Polar correspondence with respect to convex regions. Duke Math J, University of Kentucky, 1937,3(2): 355~369.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部