摘要
采用有限元法对直井中钻柱非线性屈曲控制微分方程进行了求解,力学模型中考虑了钻柱的重力,摒弃了传统分析中的无重力、等螺距和小位移假设,考察了不同边界条件对钻柱屈曲的影响。基于有限元分析的结果给出了钻柱非线性螺旋屈曲临界载荷定义,分析了位移高阶项在钻柱弯矩计算中的影响。分析表明,根据给出的定义确定的钻柱螺旋屈曲临界载荷与实验数据吻合,位移高阶项在弯矩计算中不可忽略。为石油钻采工程中钻柱螺旋屈曲临界载荷的预测提供了一种有效的方法。
The nonlinear governing differential equilibrium equations of tubing buckling in straight wells are solved by the finite element method. The effect of tubing gravity is included. The assumptions of no gravity, constant pitch, and small displacement in traditional analysis are abandoned. The effects of different boundary conditions on the buckling of tubing are studied. The def'mition of helical buckling critical load of tubing in straight wells is given based on the finite element analysis. The influence of high order derivative of displacement on the value of drill tubing bending moment is studied. It is shown that the helical buckling critical load of tubing based on the theory presented in this paper fits well with the experiment result, and the high order derivative of displacement in the equation of tubing bending moment can not be neglected. An efficient method to predict the helical buckling critical load of tubing in straight wells of petroleum engineering is presented.
出处
《工程力学》
EI
CSCD
北大核心
2007年第1期173-177,共5页
Engineering Mechanics
基金
Smith Tool International Inc.USA(2004-013-15L)资助
关键词
有限元
临界载荷定义
数值仿真
直井
钻柱
螺旋屈曲
非线性
finite element
def'mition of critical load
numerical simulation
straight wells
drill tubing
helical buckling
nonlinear
作者简介
刘峰(1977),男,四川崇州人,讲师,博士,从事工程问题力学数值仿真研究(E-mail:lhjlf999@sohu.com);
王鑫伟(1948),男,江苏苏州人,教授,博士,博导,所长,从事数值计算研究;
甘立飞(1979),男,四川广安人,博士生,从事工程问题力学数值仿真研究。