期刊文献+

Banach空间中广义集值拟变分包含的灵敏性分析

Sensitivity Analysis of Generalized Set-Valued Quasi-Variational Inclusion in Banach Spaces
在线阅读 下载PDF
导出
摘要 研究了Banach空间中一类广义集值拟变分包含问题的灵敏性分析.利用预解算子的技巧,在对给定条件没有假设可微性和单调性下,建立了这类问题与广义预解方程类的等价性. The sensitivity analysis for a class of gemeralized set-valued quasi-variational inclusion problems is investigated in the setting of Banach spaces. Equivalence of these problems to the class of generalized resolvent equations by using the resolvent operator technique without assuming the differentiability and monotonicity of the given data is established.
出处 《应用数学和力学》 CSCD 北大核心 2007年第1期85-91,共7页 Applied Mathematics and Mechanics
基金 教育部高等学校优秀青年教师教学和科研奖励基金资助项目(0705) 上海市曙光计划资助项目(BL200404) 上海市重点学科建设资助项目(T0401)
关键词 广义集值拟变分包含 广义预解方程 灵敏性分析 Lipschitz连续算子 BANACH空间 generalized set-valued quasi-variational inclusion generalized resolvent equation sensitivity analysis Lipschitz continuous operator Banach space
作者简介 曾六川(1965-),男,湖南邵东人,教授,博士,博士生导师(联系人.E-mail:zenglc@hotmail.com). 姚任之(1959-),男,湖南邵阳人,教授,博士,博士生导师(E-mail:yaojc@math.nsysu.edu.tw).
  • 相关文献

参考文献10

  • 1Jung J S,Morales C H.The Mann process for perturbed m-accretive operators in Banach spaces[J].Nonlinear Analysis,2001,46(2):231-243.
  • 2Chang S S.Fuzzy quasivariational inclusions in Banach spaces[J].Applied Mathematics and Computation,2003,145 (2/3):805-819.
  • 3Chang S S,Cho Y J,Lee B S,et al.Generalized set-valued variational inclusions in Banach spaces[J].Journal of Mathematical Analysis and Applications,2000,246(2):409-422.
  • 4Hassouni A,Moudafi A.A perturbed algorithm for variational inclusions[J].Journal of Mathematical Analysis and Applications,1994,185 (3):706-712.
  • 5曾六川.广义非线性集值混合拟变分包含的扰动近似点算法[J].数学学报(中文版),2004,47(1):11-18. 被引量:5
  • 6Liu L W,Li Y Q.On generalized set-valued variational in clusions[J].Journal of Mathematical Analysis and Applications,2001,261(1):231-240.
  • 7Salahuddin.Parametric generalized set-valued variational inclusions and resolvent equations[J].Journal of Mathematical Analysis and Applications,2004,298(1):146-156.
  • 8Schaible S,YAO Jen-chih,ZENG Lu-chuan.On the convergence analysis of an iterative algorithm for generalized set-valued variational inclusions[J].Journal of Nonlinear and Convex Analysis,2004,5(3):361-368.
  • 9ZENGLuchuan.ON THE CONVERGENCE ANALYSIS OF ALGORITHMS FOR GENERALIZED SET-VALUED VARIATIONAL INCLUSIONS IN BANACH SPACES[J].Journal of Systems Science & Complexity,2004,17(1):64-74. 被引量:4
  • 10Dafermos S.Sensitivity analysis in variational inequalities[J].Mathematcs of Operations Research,1988,13:421-434.

二级参考文献13

  • 1曾六川.关于求完全广义强的非线性拟变分不等式的逼近解的迭代算法[J].应用数学和力学,1994,15(11):1013-1024. 被引量:27
  • 2N J Huang, Generalized nonlinear variational inclusions with noncompact valued mappings, Appl Math Lett, 1996, 9(3): 25-29.
  • 3M A Noor, Generalized multi-valued quasi-variational inequalities (Ⅱ), Comput Math Appl,199835(5): 63-78.
  • 4L C Zeng, Iterative algorithm for finding approximate solutions to completely generalized strongly nonlinear quasi-variational inequality, J Math Anal Appl, 1996, 201: 180-194.
  • 5L C Zeng: On a general projection algorithm for variational inequalities, J Optim Theory Appl,1998, 97: 229-235.
  • 6S B Nadler, Multi-valued contraction mappings, Pacific J Math, 1969, 30: 475-488.
  • 7S S Changl, On Chidume's open questions and approximate solutions for multi-valued strongly accretive mapping equations in Banach spaces, J Math Anal Appl, 1997, 216: 94-111.
  • 8V Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff Internat Publ, Leyden, The Netherlands, 1976.
  • 9S S Chang, Y J Cho et al, Generalized set-valued variational inclusions in Banach spaces, J Math Anal Appl, 2000, 246: 409-422.
  • 10M A Noor, Generalized set-valued variational inclusions and resolvent equations, J Math Anal Appl, 1998, 228: 206-220.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部