期刊文献+

连续因果图的推理及参数学习 被引量:2

Reasoning and Learning of the Parameters in Continuous Causality Diagram
在线阅读 下载PDF
导出
摘要 因果图理论是利用图形化和直接因果强度来表达知识和因果关系的一种基于概率论的推理方法,而对于连续的因果图连接事件的概率密度函数(或可能性密度函数)是连续因果图能进行推理的关键,一般都是假定它们可由领域专家给出,这在实际中很难办到。文章首先给出了连续因果图的推理过程,然后讨论了如何利用已知数据集,在因果图结构已知的条件下利用参数、非参数、半参数化方法估计出连接事件的概率密度函数的途径。 Causality diagram theory is a methodology based on probability theory, which adopted graphical expression of knowledge and direct causal intensity of causality. The probability density function of linkage events is the basis of the inference. But it is difficult to give it by expert In the paper, we discuss the approaches to learn the parameters (probability density function of linkage events) from a set of data, given a fixed network structure, by the parametric, non-parametric and semi- parametric methods.
作者 王洪春
出处 《微电子学与计算机》 CSCD 北大核心 2007年第1期18-20,24,共4页 Microelectronics & Computer
基金 重庆市高等学校优秀中青年骨干教师计划重庆师范大学博士专项基金
关键词 因果图 概率密度函数 参数估计 Causality diagram, Probability density function, Parametric estimation
作者简介 王洪春,男.博士。研究方向为人工智能、不确定性推理。
  • 相关文献

参考文献7

二级参考文献21

  • 1王洪春,张勤.基于因果图的一种近似推理算法[J].重庆大学学报(自然科学版),2004,27(8):96-99. 被引量:14
  • 2Zhang Q. Probabilistic reasoning based on dynamic causality tree/diagrams [ J]. Reliability Engineering and System Safety, 1994,46(3) :209 -220.
  • 3Zhang Q, An X, Gu J, et al. Application of FBOLES -a prototype expert system for fault diagnosis in nuclear power plants [ J ]. Reliability Engineering and System Safety, 1994, 44(3) :225 -235.
  • 4张勤 刘启元 樊兴华.面向工业应用的智能开发平台及系统研究[R].重庆市科学技术项目验收报告,2001..
  • 5ZHANG Qin. Probabilistic Reasoning Based on Dynamic Causality Tree/Diagrams. Reliability Engineering and System Safetv, 1994, 46: 209~220.
  • 6WANG Cheng-liang, SHEN Wen-wu, et al. Gibbs Simulation in Causality Diagram. Proceedings of the 7th International conference for Young Computer Scientists, Harbin,China, 2003, 8(10): 273~277.
  • 7.[EB/OL].http://www.norsys.com/netlib/asia.dnet.,.
  • 8ZHANG Qin. Probabilistic Reasoning Based on Dynamic Causality Tree/Diagrams. Reliability Engineering and System Safety, 1994, 46: 209~220.
  • 9ZHANG Qin. Continuous Possibility Propagation Diagram Approach for Reasoning under Uncertainty. Proceedings of the IEEE International Conference on System, Man and Cybernetics, Piscataway, NJ, USA, 96CH35929, 1996,2:1426~1429.
  • 10樊兴华.[D].重庆:重庆大学自动化学院,2001.

共引文献52

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部