摘要
研究含初始缺陷裂纹梁一端固定,另一端被一质量块沿轴向以某一速度进行碰撞而导致的动力屈曲问题。根据Ham ilton原理导出考虑初始缺陷及横向剪切变形时裂纹梁的动力屈曲控制方程,并应用线弹簧理论将裂纹引入到屈曲控制方程中,用有限差分法对控制方程进行求解,基于B-R动力屈曲判断准则,确定临界冲击速度。比较了裂纹梁与无裂纹梁的临界冲击速度和屈曲模态,针对裂纹梁主要考察了不同的冲击块质量、初挠度形状等因素对屈曲模态的影响。
The dynamic buckling of a cracked beam with initial geometric imperfections was analyzed here.The influences of the transverse shear deformations were considered.The boundary conditions of the beam are that one end is fixed and the other one is impacted by mass.The nonlinear dynamic equations of the beam were derived from Hamilton principle and the crack effect was taken into account in buckling governing equations by using line-spring model of fracture mechanics.Based on the B-R dynamic buckling criterion,the equations were solved numerically by finite difference method and the critical impact velocity was obtained.The effects of crack,impact mass,initial geometric imperfections and the location of crack on the dynamic buckling of the cracked beams were discussed.
出处
《振动与冲击》
EI
CSCD
北大核心
2006年第6期13-16,24,共5页
Journal of Vibration and Shock
基金
国家自然科学基金资助项目(10202013)
上海市高校优秀青年教师后备人选项目资助
关键词
裂纹梁
脉冲屈曲
有限差分
质量块
临界冲击速度
cracked beam,dynamic pulse buckling,finite difference,mass,critical impact velocity
作者简介
朱荣成 男,硕士,1981年9月生
通讯作者:唐文勇