期刊文献+

设备噪声监测中主分量的特征表示 被引量:6

Principle component representations for machine noise monitoring
在线阅读 下载PDF
导出
摘要 研究了设备噪声监测中主分量特征表示的提取及应用。在设备噪声时域和频域统计模式特征基础上,通过主分量分析探讨了设备噪声模式的主分量特征表示方法,引入相关度的概念分析了主分量特征表示对设备状态的表征能力,提出了选择有效维数的主分量特征表示进行设备噪声监测的方案。通过在EQ6100型发动机上预先模拟四种连杆轴承磨损故障,测取噪声信号,实例分析显示了低维主分量特征表示可以有效表征设备状态。实验最后对测试集样本进行状态监测得到了100%的准确率,表明了主分量特征表示用于设备噪声监测的有效性。 The extraction and application of principle component representations were studied for machine noise monitoring. On the base of the time- and frequency domain statistical features extracted from the machine noise signal, the principle component representations of machine noise pattern were explored, the ability of principle component representations to represent the characteristic of machine condition by introducing the idea of correlation was analyzed, and the machine noise monitoring scheme using the effective low-dimensional principle component representations was proposed. Through previously designing four wearing faults on the connecting rod bearing of EQ6100 model gasoline engine, experimental analysis shows that the low-dimensional principle component representations of engine noise can be conveniently and effectively used for representing the machine conditions. Finally, the excellent result with the accuracy of 100% was obtained by monitoring the conditions of the testing samples, which demonstrates the availability of principle component representations for machine noise monitoring.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2006年第6期1093-1099,共7页 Optics and Precision Engineering
关键词 设备噪声 状态监测 主分量分析 连杆轴承 磨损 machine noise condition monitoring principle component analysis connecting rod bearing wearing
作者简介 何清波(1980-),男,河南台前人,中国科学技术大学精密机械与精密仪器系博士研究生,研究方向为盲信号处理、统计信号处理、设备状态监测;E-mail:heqb@ustc.edu.cn; 孔凡让(1951-),男,安徽人,教授,博士生导师,中国科学技术大学工程科学学院副院长,研究方向为智能信息处理、振动分析、测控技术、设备状态监测与故障诊断等。
  • 相关文献

参考文献8

  • 1贾继德,孔凡让,刘永斌,王建平,刘维来,陈剑.发动机连杆轴承故障噪声诊断研究[J].农业机械学报,2005,36(6):87-91. 被引量:15
  • 2常西畅,周艳玲,陈进.机械设备噪声故障诊断的新进展[C].北京:全国振动(诊断、模态、噪声与结构动力学) 工程及应用学术会议论文集,2002:140-143.
  • 3赵吉文,俞巧云,王建平,贾继德,孔凡让,李晓峰.往复式机械非平稳信号的混沌与分形[J].光学精密工程,2003,11(6):637-642. 被引量:5
  • 4MALHI A,GAO R.PCA-based feature selection scheme for machine defect classification[J].IEEE Transaction on Instrumentation and Measurement,2004,53:1517-1525.
  • 5JOLLIFFE I T.Principal component analysis[M].Springer,New York,1986.
  • 6TURK M,PENTLAND A.Face recognition using eigenfaces[C].Proc.IEEE Conf.on Comp.Vision and Patt.Recog.,1991:586-591.
  • 7BAYDAR N,CHEN Q,BALL A,et al.Detection of incipient tooth defect in helical gears using multivariate statistics[J].Mechanical Systems and Signal Processing,2001,15:303-321.
  • 8FAN X,ZUO M J.Gearbox fault detection using Hilbert and wavelet packet transform[J].Mechanical Systems and Signal Processing,2006,20:966-982.

二级参考文献15

  • 1杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000..
  • 2常西畅,周艳玲,陈进.机械设备噪声故障诊断的新进展.北京:全国振动(诊断、模态、噪声与结构动力学)工程及应用学术会议论文集,2002.
  • 3Grossman A. Wavelet transform and edge detection. Stochastic Processes in Physics and Engineering, 1986,16:458-472.
  • 4Zadeh L A. Fuzzy sets. Information and Control, 1965, 8(3):338-353.
  • 5Zadeh L A. Fuzzy algorithms. Information and Control, 1968, 12(2):94-102.
  • 6Bezdek J C. Pattern recognition with fuzzy objective function algorithms. New York: Plenum Press, 1981.
  • 7Chiu S. Fuzzy model identification based on cluster estimation. Journal of Intelligent & Fuzzy Systems, 1994, 2(3):267-268.
  • 8王洪海,袁维宝,师素娟.柴油机故障诊断中的模糊多元判别法[J].华北水利水电学院学报,1997,18(4):43-46. 被引量:2
  • 9贾继德,吴礼林,李志远.活塞敲缸故障的诊断研究[J].农业机械学报,2000,31(2):79-81. 被引量:9
  • 10石文孝,荆涛,杨怀江.混沌序列的神经网络实现[J].光学精密工程,2000,8(3):231-233. 被引量:8

共引文献22

同被引文献41

引证文献6

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部