期刊文献+

多目标遗传局部搜索算法的研究进展 被引量:4

Progress in Multi-objective Genetic Local Search Algorithm
在线阅读 下载PDF
导出
摘要 在分析了由演化算法局部搜索能力差造成的多目标演化算法在收敛速度和求解精度上尚不能令人满意的局限性的基础上,详细地论述了融入局部优化方法的多目标混合演化算法能够有效地平衡算法的全局搜索与局部搜索能力、均衡搜索效率与效果,而且已成为求解多目标优化问题的一个非常重要而有前途的研究方向。其次,综述了多目标遗传局部搜索算法的研究进展与分类。最后,简单介绍了一些具有代表性的多目标遗传局部搜索算法,并提出了其有待进一步研究的若干方向和内容。 This paper analyzes the limitations of multi- objective evolutionary algorithm in convergence speed and solution's precision that are caused by the poor local search ability of evolutionary algorithm. The multi - objective genetic local search ( MOGLS) algorithm that is fused'with local optimization methods becomes an important and promising research direction. This algo- rithm can balance the ability of global search and that of local search, and the effect and efficiency of equilibrium. Secondly, development and classification of multi - objective genetic local search algorithm are reviewed. Finally, some representative MOGLS algorithms are introduced and further studies are proposed.
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2006年第12期38-40,57,共4页 Journal of Wuhan University of Technology:Information & Management Engineering
关键词 多目标优化问题 多目标遗传局部搜索算法 多目标演化算法 局部搜索 multi -objective optimization problem multi -objective genetic local search algorithm multi -objective evolutionary algorithm local search
作者简介 谢啸虎(1986-)。男,江西萍乡人。武汉理工大学计算机科学与技术学院本科生.
  • 相关文献

参考文献10

  • 1ISHIBUCHI H, YOSHIDA T, MURATA T. Balance between genetic search and local search in memetic algorithms for multi -objective permutation flowshop scheduliag [ J ]. IEEE Transactions on Evolutionary Computation, 2003, 7 (2) : 204 - 223.
  • 2ZITZLER E, DEB K, THIELE L. Comparison of multi-objective evolutionary algorithms: empirical results[ J ]. Evolutionary computation, 2000, 8 (2), 173 -195.
  • 3GOEL T, DEB K. Hybrid methods for multi - objective evolutionary algorithms [ C ]. WANG L P. Proc. of the 4th Asia - Pacific Conference on Simulated Evolu-tion and Learning. Singapore:Nanyang Technical University, 2002 : 188 - 192.
  • 4ISHIBUCHI H, MURATA T. Multi - objective genetic local search algorithm[ C]. Proc. of 3rd IEEE International Conference on Evolutionary Computation. Japan : Nagoya, 1996 : 119 - 124.
  • 5JASZKIEWICZ A.Genetic local search for multi-objective combinatorial optimization[J].Journal of Operational Research,2002,137(1):50-71.
  • 6ULUNGU E,TEGHEM J.MOSA method:a tool for solving multiobjective combinatorial optimization Problems[J].Journal of Multi-Criteria Decision Analysis,1999,8(4):221-236.
  • 7KNOWLES J, CORNED. M -PAES: a memetic algorithm for multi - objective optimization [ C ]. Proc.of 2000 Congress on Evolutionary Computation. New Jersey : Piscataway, 2000 : 325 - 332.
  • 8DEB K, GEOL T. A hybrid multi - objective evolutionary approach to engineering shape design [ C ].Proc. of 1st International Conference on Evolutionary Multi - Criterion Optimization, Springer - Verlag: Lecture Notes in Computer Science, 2001 : 385 - 399.
  • 9TALBI E,MABED M,DHAENEN C.Hybrid evolutionary approach for multicriteria optimization problems:application to the flow shop[C].Proc.of 1st International Conference on Evolutionary Multi-Criterion Optimization.Springer-Verlag:Lecture Notes in Computer Science,2001:416-428.
  • 10KNOWLES J,CORNE D.Memetic algorithms for multi-objective optimization:issues,methods and prospects[J].Studies in Fuzziness and Soft Computing,2005(166):313-352.

同被引文献64

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部