期刊文献+

多水平模型在家庭急性上呼吸道感染调查中的应用 被引量:2

Application of multilevel model for family's survey of acute upper respiratory tract infection
在线阅读 下载PDF
导出
摘要 目的:应用多水平模型(Multilevel Model,MLM)分析南京市家庭急性上呼吸道感染调查数据,分析个体发病次数的影响因素及家庭的随机效应。方法:分布函数采用Poisson分布和负二项分布,参数估计为迭代广义最小二乘法。结果:本次调查影响个体发病次数的因素为年龄<14岁,既往有呼吸道疾病史的个体发病次数较多,而健康状况好的发病次数较少。家庭间存在随机效应,家庭内个体发病的相关系数为0.2左右。结论:多水平模型分析具有层次结构特征数据,可以提供更多的信息。 Objective: To study acute upper respiratory tract infection with the method of multilevel model (MLM) and analyze the influential factors of the incidence in families and family's random effect. Method: The response variable is fitted with Poisson and negative binomial distributions, and the coefficient is estimated with IGLS. Results. It was found that those who are less than 14 years; had history of chronic respiratory system disease are higher risk population of ARI, while the incidence was lower for those who are in good health condition. Conclusion: The data with clusters can give more information when the method is MLM.
出处 《江苏预防医学》 CAS 2006年第4期4-7,共4页 Jiangsu Journal of Preventive Medicine
基金 江苏省卫生厅135项目开放课题(WK200217) 江苏预防医学基金资助项目(2004434)
关键词 多水平模型 POISSON分布 负二项分布 上呼吸道感染 MLM Poisson distribution negative binomial distribution upper respiratory tract infection
作者简介 闵捷(1962-),女,江苏盐城人,副教授。
  • 相关文献

参考文献6

  • 1Goldstein,H.Multilevel Models in Educational and Social Research[M].Charles Griffin & Company Ltd,London,1987:25.
  • 2Zeger,S.L.and Liang,KY.An overview of methods for the analysis of longitudinal data[J].Statistics in Medicine,1992,11:1 825-1 839.
  • 3Donner A.Some aspects of the design and analysis of cluster randomization trials[J].Applied Statistics,1998,47:95-113.
  • 4吴晓云,曾庆,周燕荣.多水平模型的最新进展[J].数理医药学杂志,2003,16(2):152-154. 被引量:21
  • 5Aitkin M,Anderson D.and Hinde,J Statistical modeling of data on teaching styles (with discussion)[J].Journal of the Royal Statistical Society,1981,61:144-148.
  • 6Goldstein H.Restricted unbiased iterative generalised least squares estimation[J].Biometrika,1989,76:622-623.

二级参考文献18

  • 1[1]Rasbash J, Browne W, Goldstein H, et al. A User's Guide to MlwiN (Second Edition). London. Institute of Education. 2000,6~9.
  • 2[2]Goldstein H. Multilevel Statistical Models. Second Edition. London: Edward Arnold. 1995.
  • 3[3]Goldstein H, Healy M J R, Rasbash J. Multilevel Time Series Models with Applications to Repeated Measures Data. Statistics in Medicine. 1994,13:1643~1655.
  • 4[4]Barbosa MF, Goldstein H. Discrete Response Multilevel Models for Repeated Measures; an application to voting intentions data. Quality and Quantity. 2000, 34(3):323~330.
  • 5[5]Rampichimi C, Schifini S. A Hierarchical Ordinal Protit Model for the Analysis of Life Satisfaction in Italy. Social Indicators Research, 1998,44:5~39.
  • 6[7]Yang M. Multilevel Models for Multiple Category Responses-a Simulation. Multilevel Modelling Newsletter, 9(1):9~15.
  • 7[8]Yang M, Fielding A, Goldstein H. Multilevel Ordinal Models for Examination Grades. Journal of Educational and Behavioral Statistics. 2001,26(4).
  • 8[9]Gibbons R, Hedeker D. Random Effects Probit and Logistic Regression Models for Three-Level Data. Biometrics, 1997,53:1527~1537.
  • 9[10]Langford I, Leyland A, Rasbash J, et al. Multilevel Modelling of The Geographical Distributions of Diseases. Journal of Royal Statistical Society, Series C, 1999,48 Part 2:253~268.
  • 10[11]Leyland A, Langford I, Rasbash J, et al. Multivariate Spatial Models for Event Data. Statistics in Medicine. 2000,19:2469~2478.

共引文献20

同被引文献18

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部