期刊文献+

人工神经网络用于造纸废水处理建模的研究 被引量:1

The Simulation Study for Modeling of Wastewater Treatment Based on Neural Network
在线阅读 下载PDF
导出
摘要 利用造纸废水处理监控系统取得表征废水水质的各项指标,在此基础上研究了基于BP网络和RBF网络的造纸废水处理建模。仿真结果表明,BP网络较RBF网络对样本数据的仿真误差较小,泛化能力更好;输入量考虑历史出水COD变化趋势的网络,其仿真效果要优于不考虑变化趋势的网络;运用基于BP网络和RBF网络的造纸废水处理模型能够准确地预测出水COD,为实现废水处理的自动控制提供可行途径。 Based on the gaining the water quality index through monitor system for wastewater treatment in papermaking, wastewater treatment models by BP and RBF neural networks are studied. The result of simulation shows that the model established by BP network has a smaller simulated error and a better general ability according to the model established by RBF network, and the network considering the changing trend of historical COD value of effluent in the input layer has a better simulation effect than the one without the changing trend. The wastewater treatment models by BP and RBF neural networks can accurately predict the COD value of effluent, providing a mean to realize automatic control in wastewater treatment.
出处 《造纸科学与技术》 2006年第6期132-136,共5页 Paper Science & Technology
基金 广东省科技厅重大专项基金(项目号2003A3040406) 广州市科技计划项目(项目号2004Z3-D0271)资助 项目名称"二次纤维造纸废水处理智能控制系统"。
关键词 造纸 废水处理 BP神经网络 RBF神经网络 仿真研究 papermaking wastewater treatment BP neural network RBF neural network simulation study
作者简介 黄明护,男,硕士研究生,主要从事制浆新技术与污染控制的研究。
  • 相关文献

参考文献4

二级参考文献29

  • 1蒋茹,曾光明,黄国和,谢更新,林玉鹏,秦肖生.改进的遗传算法在城市污水处理厂区间数优化设计模型中的应用[J].安全与环境学报,2004,4(3):45-48. 被引量:1
  • 2Pei Shuyi,博士学位论文,1994年
  • 3屈梁生,Proc Inst Mech Eng,1993年,27卷,325页
  • 4蔡正国,博士学位论文,1993年
  • 5Meyer U,Popel HJ. Fuzzy control for nitrogen removal and energy saving in wwt-plants with predenitrification[J]. Wat Sci & Tech, 2003,47(11):69-76.
  • 6Belanche L. Predction of the bulking phenomenon in wastewater treatment plants[J]. Artificial Intelligence in Engineering,2000,(14): 307-317.
  • 7Choi D J, Park H. A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process[J]. Wat Res,2001,35(16):3959-3967.
  • 8Faur-Brasquet C, Le Cloirec P. Neural network modeling of organics removal by activated carbon cloths[J]. J Envir Eng,2001,10(1):889-894.
  • 9Luccatini L, Porra E, Spagni A. Soft sensors for control of nitrogen and phosphorus removal from wastewaters by neural networks[J]. Wat Sic & Tech, 2002,45(4-5): 101-107.
  • 10Doby T A, Loughlin D H. Optimization of activated sludge designs using genetic algorithms[J]. Wat Sci & Tech, 2002, 45(6):187-198.

共引文献61

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部