摘要
基于生物激励神经网络、滚动窗口和启发式搜索,提出了一种新的完全遍历路径规划方法.该方法用G rossberg的生物神经网络实现移动机器人的局部环境建模,将滚动窗口的概念引入到局部路径规划,由启发式算法决定滚动窗口内的局域路径规划目标.该方法能在不确定动态环境中有效地实现机器人自主避障的完全遍历路径规划.仿真研究证明了该方法的可用性和有效性.
A new approach to complete coverage path planning for mobile robots, which integrates biologically inspired neural network, rolling window and heuristic searching, is presented. The local environment of mobile robot is modeled with Grossberg's biological neural networks. The concept of rolling window is introduced into local path planning, and the local path planning goal in the rolling window can be determined by heuristic searching methods. The complete coverage path planning with dynamic obstacle avoidance for mobile robots can be efficiently implemented by the proposed method in uncertain dynamic environments. The effectiveness and feasiblity of the proposed method are illustrated by simulations.
出处
《机器人》
EI
CSCD
北大核心
2006年第6期586-592,共7页
Robot
基金
浙江省自然科学基金资助项目(Y104560)
浙江省留学回国基金资助项目
杭州电子科技大学科研启动基金资助项目(KYS09150543)
关键词
遍历路径规划
生物激励神经网络
滚动窗口
启发式规划
complete coverage path planning
biologically inspired neural network
rolling window
heuristic planning
作者简介
邱雷娜(1978-),女,硕士,助教.研究领域:智能机器人与智能系统,智能计算等.
刘士荣(1952-),男,博士,教授.研究领域:复杂系统建模、控制与优化,智能控制与智能机器人等.
宋加涛(1966-),男,博士,教授.研究领域:数字图像处理,模式识别等.