期刊文献+

线阵阵元位置误差造成的测向误差估算 被引量:7

Estimation of direction finding errors caused by sensor positions errors of linear array
在线阅读 下载PDF
导出
摘要 阵元位置误差导致阵列流形改变,形成误差流形,子空间算法搜索既定理想流形,从而产生测向误差(准确性和分辨力降低)。将线阵的误差流形与理想流形看作CN中的曲线,以微分几何为工具,分析了子空间与二者之间的相互关系,给出了测向误差的估算方法。仿真结果说明这种估算方法在一定条件下可行。 Array sensor positions errors(ASPE) change nominal array manifold into error manifold, but subspace algorithms still search nominal manifold for DOA, so ASPE degrade the performance (accuracy, resolution)of DF algorithms. Nominal manifold and error manifold are seen as the curves embedded in C^N, and the relationship between them and subspaces were analyzed using differential geometry, a new method to estimate DF errors from ASPE was proposed. Simulation results show that the method is conditionally valid.
出处 《电波科学学报》 EI CSCD 北大核心 2006年第5期717-721,共5页 Chinese Journal of Radio Science
基金 国防重点实验室基金基目(51435050101DZ02)
关键词 阵列 准确性 分辨力 子空间 曲率 流形 array, accuracy, resolution, subspace, curvature, manifold
作者简介 刘洪盛(1966-),男,吉林人,电子科技大学在职博士生,主要研究方向为阵列信号处理。liuhongsheng_66@163.com. 肖先赐(1933-)男,湖南人,电子科技大学教授。博士导师,主要研究方向为信号处理在电子对抗中的应用。Email:xcxiao@uestc.edu.cn
  • 相关文献

参考文献14

  • 1Ralph O Schmidt. Multiple emitter location and signal parameter estimation[J]. IEEE Trans. On antennas and propagation. 1986, Ap-34(3).
  • 2Peter Stoica and Arye Nehorai. MUSIC, maximum likelihood, and cramer-rao bound[J]. IEEE Trans.On Acoustics Speech, and Signal Processing. 1989,37(5):720-741.
  • 3A Manikas, Karimi H R and Dacos I. Study of the detection and resolution capabilities of a one-dimensional array of sensors by using differential geometry[J]. IEE Proceedings on Radar, Sonar and Navigation, 1994,141(2): 83-92.
  • 4I Dacos and A Manikas. Estimating the manifold parameters of one-dimensional arrays of sensors [J].Rranklin Inst. Eng. Appl. Math., 1995,332B(3)307-332.
  • 5Fistas, N, and A Manikas. A new general global array calibration method [A]. ICASSP-94. IEEE International Conference on Acoustic,Speech and Signal Processing [C]. 1994(4) :73-76.
  • 6Flanagan, B P and Bell, K L. Improved array self calibration with large sensor position errors for closely spaced sources [A[. Sensor Array and Muhichannel Signal Processing Workshop 2000. Proc. of the 2000IEEE [C] 2000:484-488.
  • 7Anthony J Weiss and Friedlander, B. Effects of modeling errors on the resolution threshold of the music algorithm. [J]. IEEE Trans. On Signal Processing 1994,42(6):1519-1526.
  • 8Yosef Rockah and Peter M Schuhheiss . Array shape calibration using sources in unknown locations-Part I:far field sources [J]. IEEE Trans. on acoustics,speech, and signal processing , 1987, ASSP 35( 3):286-299.
  • 9张翼,柯亨玉,程丰,李国玮.基于MUSIC算法高频地波雷达的角分辨率[J].电波科学学报,2003,18(3):264-269. 被引量:12
  • 10邵朝,保铮.系统幅相误差的统计拟合[J].电子学报,1997,25(9):83-85. 被引量:3

二级参考文献24

  • 1杨超,阮颖铮.空间谱估计测向中通道失配与阵元间互耦的一次性补偿[J].电子科学学刊,1995,17(2):206-209. 被引量:18
  • 2贾永康,保铮,吴洹.一种阵列天线阵元位置、幅度及相位误差的有源校正方法[J].电子学报,1996,24(3):47-52. 被引量:74
  • 3黄德耀.高频雷达海洋回波谱特性及影响其质量的因素[J].电波科学学报,1996,11(2):94-101. 被引量:16
  • 4郭永康 鲍培谛.光学教程[M].四川:四川大学出版社,1996..
  • 5[1] R.O.Schmidt,A signal subspace approtach to multiple emitter location,Ph.D.dissertation,Stanford Univ.,Stanford,CA,1980
  • 6[2] R.Kumaresan and D.W.Tufts.Estimating the angle of arrival of multiple plane waves.IEEE Trans.Aerospace Electron.Syst.,Jan.1983,AES-19:134~139
  • 7[3] A.L.Swindlehurst and T.Kailaith.A performance analysis of subspace based methods in the presence of model errors,Part I:The MUSIC algorithm.IEEE Trans.On TASSP,1992,40(6):1758~1774
  • 8[4] Henry Cox,Robert M.Zeskind,and Mark M.Owen.Effects of Amplitude and Phase Errors on Linear Predicative Array Processors.IEEE Trans on TASSP,1988,36(1):10~19
  • 9[5] B.Friedlander.A Sensitivity Analysis of the MUSIC Algorithm.IEEE Trans on TASSP 1990,38(10):1740~1751
  • 10[6] J.H.Winkinson,The Algebraic Eigenvalue Problem.New York:Oxford University Press,1965

共引文献64

同被引文献62

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部