期刊文献+

数据挖掘分类器性能度量相关问题的研究

Research of Classifier Performance Measurement in Data Mining
在线阅读 下载PDF
导出
摘要 分类是数据挖掘中的一个重要问题。基于数据挖掘分类问题的研究现状,介绍了度量分类器性能的几种主要尺度,详细评述了针对分类准确率的常见评估策略。结合作者的工作给出提高分类准确率的一些方法,指出其可能发展的方向,为进一步研究提供有益的借鉴。 Classification is a critical problem in Data Mining. This paper introduces the important performance criteria of classifier and detailedly remarks on the common judging strategies for classification accuracy based on research status of classification problem in Data Mining. Furthermore, the paper proposes some methods of increasing classification accuracy and points out the corresponding di- rections combining with authors' work, which is instructive for further research.
出处 《山西电子技术》 2006年第5期79-82,共4页 Shanxi Electronic Technology
基金 河南省科技攻关项目(0224330017) 河南工业大学校科研基金项目(0401008)
关键词 数据挖掘 分类器 性能度量 准确率 data mining classifier performance measurement accuracy
作者简介 孙宜贵 男 27岁 助教硕士
  • 相关文献

参考文献21

  • 1[3]David Hand,Heikki Mannila,Padhraic Smyth.数据挖掘原理[M].北京:机械工业出版社,2003.
  • 2[2]Guozhu Dong,Xiuzhen Zhang,Limsoon Wong,et al.CAEP:Classification by Aggregating Emerging Patterns.Discovery Science 1999.30-42.
  • 3[4]Wolpert D H.Stack Generalization[J].Neural Networks,1992(5):241-259.
  • 4刘红岩,陈剑,陈国青.数据挖掘中的数据分类算法综述[J].清华大学学报(自然科学版),2002,42(6):727-730. 被引量:169
  • 5罗可,林睦纲,郗东妹.数据挖掘中分类算法综述[J].计算机工程,2005,31(1):3-5. 被引量:64
  • 6[7]Subramani Mani,William Rodman Shankle,Malcolm B.Dick et al.Pazzani:Two-Stage Machine Learning model for guideline development.Artificial Intelligence in Medicine,1999,16(1):51-71.
  • 7[8]Amaury Lendasse,Vincent Wertz,Michel Verleysen.Model Selection with Cross-Validations and BootstrapsApplication to Time Series Prediction with RBFN Models.ICANN 2003.573-580.
  • 8[9]Ron Kohavi.A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.IJCAI1995.1137-1145.
  • 9[10]Efron B,Tibshirani R J.An Introduction to the Bootstrap,Chapman&Hall,1993.
  • 10[11]Efron B.Estimating the Error Rate of a Prediction Rule:Improvements on Cross-Validation,Journal of American Statistical Association,1983.

二级参考文献16

  • 1刘红岩.可扩展的快速分类算法的研究与实现[M].北京:清华大学出版社,2000..
  • 2Blake C, Merz C. UCI repository of machine learning databases.1998 [http://www. ics. uci. edu/- mlearn/ MLRepository.html]. Irvine,CA: University of California,Department of Information and Computer Science
  • 3Dong G,Li J. Efficient mining of emerging patterns: Discovering trends and differences. In: Proc. of KDD′99, San Diego, USA,Sept. 1999.15-18
  • 4Dong G,Zhang X,Wong L,Li J. CAEP: Classification by Aggregating emerging patterns. In:Proc. of the 2nd Int′l Conf. On Discovery Science (DS′99) ,Tokyo,Japan,Dec. 1999.30-42
  • 5Fan H,Ramamohanarao K. Bayesian Approach to use Emerging Patterns for Classification. In:Proc of 14th Australasian Database Conf. Feb. 2003. 39-48
  • 6Han J,Pei J,Yin Y. Mining frequent patterns without candidate generation. In:Proc. of the 2000 ACM-SIGMOD Intl. Conf. on Management of Data, May 2000. 1-2
  • 7Li J,Dong G, Ramamohanarao K. JEP-Classifier: Classification by Aggregating Jumping Emerging Patters. Knowledge and Information Systems, 2001,3(2): 131-145
  • 8Li J,Dong G. Ramamohanarao K. Making Use of the Most Expressive Jumping Emerging Patterns for Classification. In:Pro. of 2000 Pacific-Asia Conf. Knowledge Discovery and Data Mining (PAKDD′00) ,2000. 220-223
  • 9Li W,Han J,Pei J. CMAR: Accurate and efficient classification based on multiple class-association rules. In:ICDM′01,San Jose,CA,Nov. 2001. 369-376
  • 10Lin B, Hsu W, Ma Y. Integrating classification and association rule mining. In:KDD′98,New York,NY,Aug. 1998. 80-86

共引文献251

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部