摘要
建立了任意形状均匀各向异性油藏不稳定渗流的数学模型。利用坐标转换和Laplace变换,将均匀各向异性油藏的控制方程转变成修正的helmholtz方程,并用边界元方法获得油藏内任意点的压力,进而由杜哈美原理得到了考虑井筒储存和表皮效应的井底压力。绘制了考虑油藏各向异性、复杂边界以及油藏内存在不渗透区域等因素的井底不稳定压力典型曲线,并分析了曲线特征。与解析方法的对比表明,边界元方法计算精度很高,适用于任意形状各向异性油藏的不稳定压力动态分析。
This paper establishes mathematical model of unstable flow in uniform anisotropic reservoir of any form. It uses coordination conversion and Laplace conversion to change controlling equation of uniform anisotropic reservoir into modified helmholtz equation, uses boundary element method to obtain pressure of any point within reservoir. Then it uses Duhamel’s theory to obtain bottomhole pressure with consideration of wellbore storage and skin effect. It plots typical curve of bottomhole transient pressure considering reservoir anisotropy, complex boundary and impermeable area within reservoir, and analyzes curve characteristics. Comparison with analytic method shows that boundary element has a high accuracy and is applicable for dynamic analysis on transient pressure in anisotropic reservoirs of any form.
出处
《大庆石油地质与开发》
CAS
CSCD
北大核心
2006年第5期37-40,共4页
Petroleum Geology & Oilfield Development in Daqing
关键词
各向异性油藏
任意形状
边界元方法
不稳定压力
数学模型
anisotropic reservoir
any form
boundary element method
transient pressure
mathematical model
作者简介
何应付(1978-),男,安徽怀远人,在读博士,从事渗流力学计算方法与应用技术研究。