期刊文献+

NS方程激波计算的摄动有限差分方法 被引量:4

Peturbational finite difference scheme for shock-wave computing of Navier-Stokes equations
在线阅读 下载PDF
导出
摘要 摄动有限差分(PFD)方法从一阶迎风差分格式出发,将差分系数展开为网格步长的幂级数,通过提高修正微分方程的逼近精度来获得更高精度的差分格式。由于格式基于一阶迎风格式,因此具有迎风效应、网格节点少等特点。本文首先通过对Burgers方程的摄动差分格式的推导,将摄动有限差分格式引入时间相关法的计算,并构造了守恒形式的摄动有限差分格式,然后推广到一维Navier-Stokes方程组的计算。数值比较研究表明:本文构造的NS方程摄动有限差分格式具有比一阶迎风较高的精度和分辨率,而且保持了一阶迎风格式的无振荡性质。 In the peturbational finite difference (PFD) method, the difference coefficients of the first-order accurate upwind difference scheme are expanded into the power series of grid size, by improving the approach accuracy of modified differential equation to obtain higher-order accurate difference scheme. PFD scheme has upwind effect and only uses three grids as in the first-order upwind difference scheme. In this paper, the PFD scheme of the Burgers equation is derived. Then combined with the time depending method, the conservative-type PFD scheme is constructed and generalized to compute one-dimensional Navier-Stokes equations. The numerical results show that the present PFD scheme of NS equations has higher order accurate and better resolution than the first-order accurate upwind scheme does, and can remain the essentially non-oscillatory property.
出处 《空气动力学学报》 EI CSCD 北大核心 2006年第3期335-339,共5页 Acta Aerodynamica Sinica
基金 国家自然科学基金(10402043)资助课题
关键词 摄动有限差分格式 NS方程 激波计算 peturbational finite difference scheme Navier-Stokes equation shock-wave computing
作者简介 申义庆(1969-),男,副研究员,从事流体力学数值方法及数值模拟研究.
  • 相关文献

参考文献10

  • 1HARTEN A.High resolution schemes for hyperbolic conservation laws[J].J.Comput Phys.,1983,49(3):357-393.
  • 2HARTEN A,ENGQUIST B,OSHER S,CHAKRAVARTHY S R.Uniformly high order accuracy essentially non-oscillatory schemes Ⅲ[J].J.Comput Phys.,1987,71(2):231-303.
  • 3张涵信.无波动、无自由参数的耗散差分格式[J].空气动力学学报,1988,7(2):1431-165.
  • 4LELE S K.Compact finite difference scheme with spectral-like resolution[J].J.Comput Phys.,1992,103(1):16-42.
  • 5高智.对流扩散方程的高精度差分算法[A].北京计算流体力学讨论会文集(第六辑)[C],1994.
  • 6高智.摄动有限差分方法研究进展[J].力学进展,2000,30(2):200-215. 被引量:18
  • 7申义庆,高智,杨顶辉.双曲守恒型方程的二阶摄动有限差分格式[J].空气动力学学报,2003,21(3):342-350. 被引量:6
  • 8高智,向华,申义庆.摄动有限体积法重构近似高精度的意义[J].计算物理,2004,21(2):131-136. 被引量:5
  • 9傅德薰.流体力学数值模拟[M].北京:国防工业出版社,1994..
  • 10马延文.人工不定常方法数值求解一维Navier—Stokes方程[J].计算数学,1978,2:53-59.

二级参考文献19

  • 1陈国谦,杨志峰.对流扩散方程的指数型摄动差分法[J].计算物理,1993,10(2):197-207. 被引量:21
  • 2忻孝康,王浩,霍燚.定常对流扩散方程的修正积分因子方法[J].水动力学研究与进展(A辑),1993,8(3):285-295. 被引量:3
  • 3刘秋生,沈孟育,刘晔.求解常微分方程边值问题新的数值方法[J].清华大学学报(自然科学版),1996,36(4):7-12. 被引量:5
  • 4高智.对流扩散方程的高精度差分算法[A]..北京计算流体力学讨论会文集(第六辑)[C].,1994.1-23.
  • 5高智 李明军 朱力立.对流扩散方程的变步长摄动有限差分格式[A]..第十一届全国计算流体力学会议论文集[C].河南洛阳,2002.36-41.
  • 6HARTEN A. High resolution schemes for hyperbolic conservation laws[J]. Jour. Comput. Phys., 1983,49:357-393.
  • 7HARTEN A, EENGQUIST B, OSHER S and CHAKRAVARTHY S R. Uniformly high order accuracy essentially non-oscinatory schemes Ⅲ[J]. Jour. Comput. Phys., 1987, 71:231-303.
  • 8GAO Z. An infinite-order accurate upwind compact difference scheme for the convective diffusion equation[C]. Proc. of Asia Workshop on Computational Fluid Dynamics, Sept., 1994, Sichuan, China, 50-56.
  • 9CHEN G Q, GAO Z, YANG Z F. A perturbational h^4 exponential difference scheme for convective diffusion equation[J].Your. Compuz. Phys., 1993,104(1) :129-139.
  • 10STEGER J L, WARMING R F. Flux vector splittingg of the inviscid gasdynamlc equations with application to finite difference[J].Jour. Comput. Phys., 1981, 40:263-293.

共引文献102

同被引文献39

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部