期刊文献+

一类四阶边值问题正解的存在

The Existence of Positive Solutions of A Fourth-order Boundary Value Problem
在线阅读 下载PDF
导出
摘要 利用锥拉伸与压缩的不动点定理研究了一类方程y(4)(t)=f(t,y(t))在边值条件y(0)=y(1)=y″(0)=y″(1)=0下的正解的存在性,给出了静态梁方程正解存在的几个条件.所得结论推广了已知的一些结果. The existence of positive solution for a nonlinear fourth-order two-point boundary value problem y^(4) ( t ) = f( t, y( t )), y(0) = y(1) = y"(0) = y"( 1 ) = 0 is discussed by the fixed point theorem of cone extension of compression.
出处 《湖南师范大学自然科学学报》 EI CAS 北大核心 2006年第3期14-17,44,共5页 Journal of Natural Science of Hunan Normal University
基金 国家自然科学基金资助项目(10071018)
关键词 四阶边值问题 正解 锥拉伸与压缩不动点定理 fourth-order boundary value problem positive solution the fixed point theorem of cone extension of compression
  • 相关文献

参考文献4

二级参考文献10

  • 1Zhang Y,J Math Anal Appl,1994年,185卷,1期,215页
  • 2Agarwal, R. P., Chow, Y. M., Iterative methods for a fourthorder boundary value problem, J.Comput. Appl. Math., 1984,10:203-217.
  • 3Zhong Chengkui,Fan Xianling and Chen Wenyuan, Introduction of Nonlinear FunctionalAnalysis,Lanzhou Univ. Press, Lanzhou, 1998.(in Chinese)
  • 4Yao, Q. and Bai, Z., Existence of positive solutions of BVP for u(4)(t)-λh(t)f(u(t))=0,Chinese Ann. Math. Ser. A, 1999,20:575-578.(in Chinese)
  • 5Wang,H.,On the existence of positive solutions for semilinear elliptic equations inthe annulus, J. Differential Equations, 1994,109:1-7.
  • 6AgawalRaviP,ChowYM.Interativemethodsforaforuthorderboundaryvalueproblem[J]JComputApplMath,1984,10:203~217.
  • 7RuyunMa,ZHANGFeng-ran.Positivesolutionsoffourth-orderordinarydifferentialequations[J].数学物理学报,1998,18(supp):124~128.
  • 8GuptaCP.Existenceanduniquenessresultsforbendingofanelasticbeamequationatresonance[J].JMathAnalAppl,1988,135:208~225.
  • 9LIANWei-chen,WONGFu-hsiang.Ontheexistenceofpositivesolutionsofnonlinearsecondorderdifferentialequations[J].ProcAmerMathSoc,1996,124(4):1117~1124.
  • 10ErbeLH,WangHY.Multiplepositivesolutionsofsomeboundaryvalueproblems[J].JMathAnalAppl,1994,184:640~648.

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部