期刊文献+

多孔介质平板通道强迫对流中热局部非平衡时的热应力 被引量:6

THERMAL STRESS OF LOCAL THERMALLY NONEQUILIBRIUM FOR FORCED CONVECTION IN A POROUS MEDIUM PARALLEL PLATE CHANNEL
在线阅读 下载PDF
导出
摘要 根据微观不可压饱和多孔介质热-力-流相互作用的一般理论,在固相骨架小变形的假定下,考虑固相和流相相互作用的粘性耗散,研究了多孔介质平板通道强迫对流热局部非平衡的热应力问题.建立了问题的热-力数学模型,根据饱和多孔介质的平衡方程,在固相骨架只存在横向位移的假定下,求解了固相骨架的位移和相应的热应力,数值考察了各种物性参数对热应力分布的影响,讨论了热局部平衡模型的适用性. Based on the general theory of the thermo-mechanical-hydro couplings of saturated porous media, and take effect of the viscous dissipation due to the interaction between the two phases into account, a thermal stress of the local thermal nonequilihrium for forced convection in a porous medium parallel plate channel is investigated under the assumption of infinitesimal deformation of the solid skeleton. The mathematical model is established for the problem. Then under the assumption that the displacement of the solid phase is in transversal, the displacement and corresponding thermal stress are obtained from the equilibrium equation of porous media. The influences of dimensionless material parameters on the thermal stresses are revealed numerically, and the applicability of model of the local thermal equilibrium is discussed.
作者 杨骁 刘雪梅
出处 《固体力学学报》 CAS CSCD 北大核心 2006年第3期293-297,共5页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金(10272070) 上海市重点学科建设项目(Y0103)资助
关键词 饱和多孔介质 热局部非平衡 热应力分析 参数研究 saturated porous medium, local thermally nonequilihrium, analysis of thermal stress, parameter study
  • 相关文献

二级参考文献20

  • 1YangXiao.GURTIN-TYPE VARIATIONAL PRINCIPLES FOR DYNAMICS OF A NON-LOCAL THERMAL EQUILIBRIUM SATURATED POROUS MEDIUM[J].Acta Mechanica Solida Sinica,2005,18(1):37-45. 被引量:22
  • 2de Boer R. Theory of Porous Media : Highlights in the Historical Development and Current State[M]. Berlin, Heidelberg: Springer-Verlag, 2000.
  • 3Voller V R, Peng S. An algorithm for analysis of polymer filling of molds[J]. Poly Eng Science,1995,35(22) : 1758-1765.
  • 4Schrefler B A, Pesavento F. Multiphase flow in deforming porous material[J]. Computer and Geotechnics, 2004,31 (3) : 237-250.
  • 5Spiga G, Spiga M. A rigorous solution to a heat transfer two-phase model in porous media and packed beds[J]. Heat Mass Transfer, 1981,24(2) :355-364.
  • 6Schrefler B A. Mechanics and thermodynamics of saturated/unsaturated porous materials and quantative solutions[J]. Appl Mech Rev ,2002,55(4) :351-388.
  • 7Nield D A, Bejan A. Convection in Porous Media[M].second Ed. New York: Spring-Veriag, 1999.
  • 8Haji-Sheilkh A, Vafai K. Analysis of flow and heat transfer in porous media imbedded inside various-shaped ducts[J]. Heat Mass Transfer,2004,47(8/9) : 1889-1905.
  • 9Simacek P, Advani S G. An analytic solution for the temperature distribution in flow Utrougn porous media in narrow gaps( Ⅰ )-linear injection[J]. Heat Mass Transfer,2001,38(1/2) :25-33.
  • 10Kuznetsov A V, MING Xiong, Nield D A. Thermally developing forced convection in a porous medium: circular duct with walls at constant temperature, with longitudinal conduction and viscous dissipation effects[J]. Transport in Porous Media,2003,53(3) :331-345.

共引文献24

同被引文献63

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部