期刊文献+

数据挖掘技术在基于系统调用的入侵检测中的应用 被引量:3

Data mining technology's application on IDS based on system call
在线阅读 下载PDF
导出
摘要 数据挖掘是人工智能、机器学习与数据库技术等多学科相结合的产物。作为当前重要的前沿课题之一,研究人员提出了许多数据挖掘理论和方法,并取得了许多重要的研究成果。系统调用序列已经成为基于主机的入侵检测系统重要的数据源之一,通过对系统调用的分析来判断入侵事件,具有准确性高、误警率低和稳定性好等优点。本文运用统计、比较方法对当前国际上利用数据挖掘技术分析系统调用序列的相关著作和论文进行了详细讨论和分析,最后设计一个基于数据挖掘技术入侵检测的通用模型。 Data mining is the production of artificial intelligence and machine study and database and so on. Because it is a new important problem, researchers have put forward many theories and techniques about data mining and the harvest is significant. The system calls have already become one of the important data sources of host-based intrusion detection system. There are some merits which are the high accuracy, the low false fault and the good stability and so on by using of the system calls analysis to judge the intrusion. At present, the international research about this aspect mainly focuses on how to design effective detecting algorithms and using data mining technology to analyz the system calls sequences of improving detective effect. By means of statistics and comparison, the emphases and correlative productions about system calls sequences based on the data mining technology in resent years were discussed and analyzed in detail. Finally, a universal model based on the system calls IDS was designed.
作者 高超 王丽君
出处 《鞍山科技大学学报》 2006年第1期45-49,共5页 Journal of Anshan University of Science and Technology
关键词 系统调用 入侵检测 数据挖掘 system call intrusion detection data mining
作者简介 高超(1980-),男,辽宁鞍山人。
  • 相关文献

参考文献33

二级参考文献123

  • 1Bace R G 陈明奇等(译).入侵检测技术[M].北京:人民邮电出版社,2001..
  • 2JohnLions著 尤晋元译.莱昂氏unix源代码分析[M].,..
  • 3[1]Forrest S, Hofmeyr S A, Somayaji A, ct al. A Sense of Self for Unix Process. In Proceedings of the 1996 IEEE Symposium on Security and Privacy, 1996:120-128
  • 4[2]Hofmeyr S A, Forrest S. Intrusion Detection Using Sequences of System Calls. Journal of Computer Security, 1998,(61:151 - 180
  • 5[3]Lee W. A Data Mining Framework for Constructing Features and Models for Intrusion Detection Systems [PhD Thesis]. Columbia University, 1999-06
  • 6[4]Lindqvist U, Porras P A. Detecting Computer and Network Misuse Through the Production-based Expert System Toolset(P-BEST). In Proceedings of the1999 Symposium on Security and Privacy, Oakland,California, IEEE Computer Society, 1999-05
  • 7[1]Axelsson S. Intrusion detection systems: A survey and taxonomy [EB/OL]. http: //citeseer. nj. nec.com/axelsson00intrusion. html, 2000.
  • 8[2]Forrest S, Hofmeyr S A, Somayaji A. A sense of self for unix process[A]. Proceedings of 1996 IEEE Symposium on Computer Security and Privacy [C].Oakland, California: IEEE Computer Society Press,1996. 120-128.
  • 9[3]Lee W, Stolfo S J, Chan P K. Learning patterns from unix process execution traces for intrusion detection[A]. Proceedings of AAAI97 Workshop on AI Methods in Fraud and Risk Management[C]. Menlo Park:CA, AAAI Press,1997.50-56.
  • 10[4]Warrender C, Forrest S, Pearlmutter B. Detecting intrusions using system calls :alternative data models [A]. Proceedings of 1999 IEEE Symposium on Security and Privacy[C]. Oakland California:IEEE Computer Society Press, 1999. 133- 145.

共引文献372

同被引文献3

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部