期刊文献+

自旋为1/2粒子在消相干量子场作用下的绝热和非绝热几何相位 被引量:4

Geometric phase of a spin-1/2 particle driven by decohering quantum in adiabatic and nonadiatic evolution
在线阅读 下载PDF
导出
摘要 量子计算来源于量子相干和量子纠缠的特性,但是这两个性质都很脆弱和易于出错,很容易被称为消相干的过程破坏掉,因此如何克服消相干的影响已成为实现量子计算机的一个关键,利用非跃迁轨迹和Berry以及AA几何相位公式,计算了在绝热和非绝热情况下,分别由单模和双模消相干量子场所产生的自旋为1/2系统的几何相位。利用量子跃迁方法,当考虑绝热和非绝热演化时,发现对于非跃迁轨道,其相位修正值是不同的。最后我们从基本原理和量子计算的观点讨论了其结果的意义。 Quantum computer takes advantages from properties of superposition and entanglement, which are also very fragile and easy to be error. But they may be destroyed easily by a process called decoherence. Therefore, how to overcome the effect of decoherence is key to implement quantum computer. Using the no-jump trajectory, Berry's and AA's formula for geometric phase, we calculate the geometric phase of a spin-1/2 system driven by one and two mode quantum fields subject to decoherence in the adiabatic and nonadiabatic case, respectively. By quantum jump method, we find that the corrections to its phase for the no-jump trajectory are different when considering adiabatic and nonadiabatic evolutions. Finally, we discuss the implications of our results from fundamental and quantum computational points.
出处 《量子电子学报》 CAS CSCD 北大核心 2006年第5期628-633,共6页 Chinese Journal of Quantum Electronics
基金 井冈山学院自然科学基金资助项目[2005] 吉安市2005年度指导性重点科技计划项目(吉市科计字[2005]25号) 江西省科技厅工业攻关项目(赣科发计字[2003218]) 工业攻关计划[32]
关键词 量子光学 绝热与非绝热几何相位 非跃迁轨道 消相干量子场 自旋1/2粒子 quantum optics adiabatic and nonadiabatic geometric phase no-jump trajectory quantum field to decoherence spin-1/2 particle
作者简介 易学华(1965-),男,讲师,湖南大学应用物理系博士。E-mail: yixuehua2004@163.com
  • 相关文献

参考文献4

二级参考文献105

  • 1[1]Pellizzari T,Gardiner S,Cirac J,et al.Decoherence,continuous observation,and quantum computing:a cavity QED model [J].Phys.Rev.Lett.,1995,75:3788-3791.
  • 2[2]Zheng S B,Guo G C.Efficient scheme for two-atom entanglement and quantum information processing in cavity QED [J].Phys.Rev.Lett.,2000,85:2392-2395.
  • 3[3]Sleator T,Weinfurter H.Realizable universal quantum logic gates [J].Phys.Rev.Lett.,1995,74:4087-4090.
  • 4[4]Turchette Q A,Hood C J,Lange W,et al.Measurement of conditional phase shifts for quantum logic [J].Phys.Rev.Lett.,1995,75:4710-4713.
  • 5[5]Cirac J I,Zoller P.Quantum computations with cold trapped ions [J].Phys.Rev.Lett.,1995,74:4091-4094.
  • 6[6]Sleane A.The ion trap quantum information processor [J].Appl.Phys.B,1997,64:623.
  • 7[7]Gershenfield N A,Chuang I L.Bulk spin-resonance quantum computation [J].Science,1997,275:350.
  • 8[8]Cory D G,Fahmy A F,Havel T F.Ensemble quantum computing by NMR spectroscopy [J].Proc.Natl.Acad.Sci.U.S.A.,1997,94:1634.
  • 9[9]Jones J A,Mosca M,Hansen R H.Implementation of a quantum search algorithm on a quantum computer [J].Nature (London),1998,393:344-346.
  • 10[10]DiVicenzo D P,Bacon D,Kempe J,et al.Universal quantum computation with the exchange interaction [J].Nature,2000,408:339.

共引文献24

同被引文献12

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部