期刊文献+

经典理论与一阶理论之间简支梁特征值的解析关系 被引量:3

Analytical Relationships of Eigenvalue for a Simply Supported Beam Between EBT and TBT
在线阅读 下载PDF
导出
摘要 利用Euler-Bernoulli梁理论(EBT)和Timoshenko梁理论(一阶理论,TBT)之间,梁的特征值问题在数学上的相似性,研究了不同梁理论之间特征值的关系。将特征值问题的求解转化为一个代数方程的求解,并导出了不同梁理论之间梁的特征值之间的精确解析关系。因此,只要已知梁的经典结果(临界载荷和固有频率),便很容易从这些关系中获得一阶梁理论下的相应结果。这些解析结果清楚地显示了横向剪切变形对经典结果影响的本质特点。另外,从这些关系中获得的含有剪切变形影响的结果,可以用于检验一阶理论下梁特征值数值结果的有效性、收敛性以及精确性等问题。 Based on the mathematical similarity of the eigenvalue problem of the Euler-Bernoulli beam theory(EBT) and Timoshenko beam theory(TBT),relationships between the eigenvalues of the two theories for beams are investigated. Solving of the eigenvalue problem is converted into an algebra equation to be solved and the analytical relationships that are expressed explicitly between various theories are presented. These relationships enable the conversion of the classical (Euler-Bernoulli) beam solutions to their shear deformable counterparts using the Timoshenko beam theory. The shear deformable results obtained from these relationships may be used to check the validity,convergence and accuracy of numerical results of the Timoshenko beam theory and Reddy's third-order beam theory.
机构地区 兰州理工大学
出处 《应用力学学报》 EI CAS CSCD 北大核心 2006年第3期447-449,共3页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金资助项目(10472039) 甘肃省自然科学基金资助项目(ZS041-A25-007)
关键词 Euler—Bernoulli梁理论 TIMOSHENKO梁理论 解析关系 特征值 euler-bernoulli beam theory,timoshenko beam theory,analytical relationship,eigenvalue.
作者简介 马连生,男,1963年生,兰州理工大学理学院教授;研究方向:功能梯度材料结构的力学行为.E-mail:lsma@lut.cn
  • 相关文献

参考文献7

  • 1Wang C M,Lee K H.Buckling load relationship between Reddy and Kirchhoff circular plates[J].Journal of Franklin Institute,1998,335:989-995.
  • 2Wang C M,Reddy J N.Buckling load relationship between Reddy and Kirchhoff plates of polygonal shape with simply supported edges[J].Mechanics Research Communications,1997,24:103-108.
  • 3Wang C M,Kitipornchai S,Reddy J N.Relationship between vibration frequencies of Reddy and Kirchhoff polygonal plates with simply supported edges[J].ASME Journal of Vibration and Acoustics,2000,122:77-81.
  • 4Ma L S,Wang T J.Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory[J].International Journal of Solids and Structures,2004,41:85-101.
  • 5Reddy J N,Wang C M,Lee K H.Relationships between bending solutions of classical and shear deformation beam theories[J].International Journal of Solids and Structures,1996,34:3373-3384.
  • 6Conway H D.Analogis between the buckling and vibration of polygonal plates and membranes[J].Can Aeron J,1960,6:263.
  • 7D Pnueli.Lower bounds to the gravest and all higher frequencies of homogeneous vibrating plates of arbitrary shape[J].ASME Journal of Applied Mechanics,1975,42:815-820.

同被引文献22

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部