期刊文献+

语音识别中信道和噪音的联合补偿 被引量:11

Joint compensation of noise and channel in speech recognition
在线阅读 下载PDF
导出
摘要 频谱和倒谱的联合调整方法,用于对语音识别中信道差异和背景噪音的存在进行联合补偿。该方法根据干净语音的最大似然准则在频域和倒谱域分别对噪音和信道进行补偿,避免了对噪音和信道影响模型进行简化所带来的误差影响,且实现时间复杂度较低。在信噪比由10dB到20dB的含有信道和加性噪音的汉语数字串识别实验中,该方法使平均音节错误率相对下降了50.44%。实验表明频谱和倒谱的联合调整方法可以快速的补偿信道差异和背景噪音。 A method named spectral and cepstral joint adjusting was proposed in order to jointly compensate for the channel mismatch and existence of additive noise in speech recognition. The method compensates for the noise and channel mismatch in spectral and cepstral domain respectively based on the ML rule. It didn't simplify the model of channel and noise effect on speech, and therefore reduce the error brought by the model simplification. Furthermore, the time complicacy was relatively low. The experiment on noisy Chinese digit string recognition with SNR of 10 dB to 20 dB was carried out. The results showed that the proposed method obtained the relative error rate reduction of 50.44%, which indicated that the spectral and cepstral joint adjusting method could rapidly compensate for the channel and noise well.
作者 赵蕤 王作英
出处 《声学学报》 EI CSCD 北大核心 2006年第5期466-470,共5页 Acta Acustica
基金 863计划项目(2001AA114071)
关键词 背景噪音 语音识别 信道 补偿 最大似然准则 时间复杂度 汉语数字串 误差影响 Acoustic noise Communication channels (information theory) Error compensation Mathematical models Signal to noise ratio
  • 相关文献

参考文献12

  • 1Acero A, Stern R M. Environmental robustness in automatic speech recognition. In: Proc. IEEE Int. Conf.Acoustics, Speech and signal Processing, Albuquerque,NM, 1990; 1:849-852
  • 2Alejandro Acero. Acoustical and environmental robustness in automatic speech recognition. PH.D. Thesis. Department of Electrical and Computer Engineering CMU, AAT 9117502, 1990
  • 3Moreno P J. Speech recognition in noisy environments.PH.D. Thesis. Department of Electrical and Computer Engineering CMU, AAT 9625546, 1996
  • 4Kim D Y, Un C K, Kim N S. Speech recognition in noisy environments using first-order vector Taylor series. Speech Communication, 1998; 24(1): 39-49
  • 5韩纪庆,高文.基于环境特征判别学习的顽健语音识别方法[J].电子学报,2001,29(2):196-198. 被引量:4
  • 6Fujimoto, Masakiyo, Ariki, Yasuo. Robust speech recognition in additive and channel noise environments using GMM and EM algorithm. In: IEEE International Conference on Acoustics, Speech, and Signal Processing. Montreal, 2004; 1:I941-I944
  • 7Segura J C, Torre A de la, Benitez M C, Peinado A M.Model-based compensation of the additive noise for continuous speech recognition - experiments using AURORA Ⅱ database and tasks. EuroSpeech, 2001; 1:221-224
  • 8ZHAO Yunxin. Maximum likelihood joint estimation of channel and noise for robust speech recognition. In: IEEE International Conference on Acoustics, Speech and Signal Processing, Proceedings, Istanbulv, 2000; 2:1109-1112
  • 9WANG Zuoying. An inhomogeneous HMM speech recognition algorithm. Chinese Journal of Electronics, 1998; 7(1):73-74
  • 10赵庆卫,肖熙,王作英.段长信息在连续语音识别中的应用研究[J].声学学报,2000,25(2):175-181. 被引量:5

二级参考文献17

  • 1李健,王作英.HMM转移概率的新的重估算法[J].电子学报,2001,29(z1):1833-1835. 被引量:5
  • 2齐士钤 张家禄.汉语普通话辅音音长分析[J].声学学报,1982,(1):8-13.
  • 3王作英 曹洪.语音识别的改进隐含马尔可夫模型.863智能计算机系统主题学术会议[M].北京,1988..
  • 4计天颖.一种汉语连续语音识别的算法及其实现.博士学位论文[M].清华大学,1995..
  • 5王作英.基于段长分布的HMM语音识别模型 [A]..第二届全国汉字汉语识别会议 [C].庐山,1989.9.
  • 6Anastasakos A,ICASSP95,1995年,628页
  • 7计天颖,博士学位论文,1995年
  • 8Gu H,IEEE Trans On Signal Processing,1991年,39卷,8期,1743页
  • 9王作英,863智能计算机系统主题学术会议,1988年
  • 10齐士钤,声学学报,1982年,7卷,1期,8页

共引文献54

同被引文献117

引证文献11

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部