期刊文献+

基于微粒群优化算法的超市最优选址定量化研究 被引量:2

Particle Swarm Optimization Approach for Location of Supermarkets
在线阅读 下载PDF
导出
摘要 论文尝试使用微粒群优化算法与GIS相结合解决超市最优选址问题。首先,对影响超市经营好坏的因子进行了分析,包括:人口密度、交通因子以及竞争因子的影响;然后,详细阐述了微粒群优化算法与GIS技术相结合用于解决超市最优选址的实施方法;最后,以广州市芳村区为例,对PSO方法进行实例验证。通过与穷举法进行对比实验,证明微粒群优化算法具有较好的收敛速度、较高的结果精度,是解决超市最优选址的一种有效方法。 This paper demonstrates that using particle swarm optimization approach to solve optimal location of supermarkets based on GIS.First,the paper analyzes the factors of affecting the work of supermarkets,which include population density,traffic and competition.Second,the paper elaborates on the implementing procedure and method of optimal location of supermarkets by using PSO and GIS under population,traffic and competition constraint conditions. Finally,the paper verifies this method by a case of Fangcun District,Guangzhou.It is concluded that particle swarm optimization is a robust method of solving spatial optimal search under complex condition.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第25期16-18,52,共4页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(编号:40471105 40471106) 国家杰出青年基金资助项目(编号:40525002) "985工程"GIS与遥感的地学应用科技创新平台(编号:105203200400006)
关键词 微粒群优化算法 最优选址 GIS Particle Swarm Optimization,location of supermarkets, GIS
作者简介 杜国明(1971-),男,博士,中山大学教师,现主要从事GIS,智能计算等方向研究。E-mail:eesdgm@mail.sysu.edu.cn陈晓翔(1956-),男,教授,现主要从事GIS及RS等方向研究。黎夏,中山大学特聘教授,长江学者,博士生导师,主要从事GIS及RS等方向研究。
  • 相关文献

参考文献5

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C].In:Proceedings of IEEE International Conference on Neural Networks,Piscataway,NJ:IEEE,1995:1942~ 1948
  • 2Kennedy J,Eberhart R C.A new optimizer using particle swarm theory[C].In:Proceedings of the Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan:IEEE,1995:39~43
  • 3Kennedy,J Spears W M.Matching algorithms to problems:an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator[C].In:Proc IEEE Int Conf On Evolutionary Computation,Anchorage,AK,USA,1998:78~83
  • 4黎夏,叶嘉安.遗传算法和GIS结合进行空间优化决策[J].地理学报,2004,59(5):745-753. 被引量:49
  • 5董超俊,刘智勇,邱祖廉.灾变粒子群优化算法及其在交通控制中的应用[J].计算机工程与应用,2005,41(29):19-23. 被引量:16

二级参考文献33

  • 1董超俊,刘智勇,邱祖廉.基于混沌遗传算法的区域交通计算机控制配时优化[J].计算机工程与应用,2004,40(29):32-34. 被引量:9
  • 2Zhan H G, Lee Z P, Shi P et al. Retrieval of water optical properties for optically deep waters using genetic algorithms.IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(5): 1123-1128.
  • 3Jin Y Q, Wang Y. A genetic algorithm to simultaneously retrieve land surface roughness and soil wetness. International Journal of Remote Sensing, 2001, 22(16): 3093-3099.
  • 4Holland J. Adaptation in Natural And Artificial Systems: An Introductory Analysis with Applications to Biology,Control, And Artificial Intelligence. Cambridge, Mass: MIT Press, 1992.211.
  • 5Goldberg D E. Genetic Algorithms in Search, Optimisation and Machine Learning, Reading, MA: Addison-Wesley,1989. 412.
  • 6Openshaw S, Steadman P. On the geography of a worst case nuclear attack on population of Britain. Political Geography Quarterly, 1982, 1: 263-278.
  • 7Openshaw S, Openshaw C. Artificial Intelligence in Geography. Chichester: John Wiley & Sons, 1997. 329.
  • 8Cooper L. Location-allocation problems. Operations Research, 1963, (11): 331-343.
  • 9Cooper L. Solutions of generalized location equilibrium problems. Journal of Research Science, 1967, (7): 1-18.
  • 10Church R L. Location modeling and GIS. In: P A Longley, M F Goodchild, D J Maguire et al. (eds.), Geographical Information Systems: Volume 1. New York: John Wiley & Sons, Inc., 1999. 293-303.

共引文献62

同被引文献31

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部