期刊文献+

广义Chaplygin系统的形式不变性与Noether对称性 被引量:1

FORM INVARIANCE AND NOETHER SYMMETRY OF GENERAL CHAPLYGIN SYSTEM
在线阅读 下载PDF
导出
摘要 研究广义Chaplygin系统的形式不变性,利用广义Chaplygin方程在无限小变换下的变形形式,给出广义Chaplygin系统的形式不变性的定义和判据.给出了广义Chaplygin系统的Noether对称性判据,并研究形式不变性和Noether对称性的关系.结果表明形式不变性与Noether对称性是两种不同的对称性,广义Chaplygin方程的形式不变性有可能是Noether对称性,也可能不是Noether对称性.最后举例说明结果的应用. The form invafiance of general Chaplygin system was studied. Using the infinitesimal transformations of general Chaplygin equation, the definition and criterion of the form invariance of general Chaplygin system were given. The criterion of Noether symmetry of general Chaplygin system was given, and the relation between the form invariance and the Noether symmetry was studied. The results show that the form invariance of general Chaplygin system isn' t identical with Noether symmetry. In some situation, the form invariance may be equal to the Noether symmetry, and in another instance they are different. One example was given to illustrate the application of the result.
作者 高峰利 金波
出处 《动力学与控制学报》 2006年第3期217-220,共4页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(10272041)~~
关键词 广义Chaplygin系统 形式不变性 NOETHER对称性 守恒量 general Chaplygin system, form invariance, Noether symmetry, conserved quantity
  • 相关文献

参考文献11

二级参考文献44

  • 1梅凤翔.Birkhoff系统的Noether理论[J].中国科学(A辑),1993,23(7):709-717. 被引量:44
  • 2梅凤翔.Birkhoff系统的Poisson理论[J].科学通报,1995,40(21):1947-1950. 被引量:5
  • 3梁立孚,韦扬.论非完整系统的Hamilton原理与完整系统的Hamilton原理的统一性[J].应用数学和力学,1996,17(5):439-444. 被引量:3
  • 4[5]Mei Fengxiong.Lie symmetries and conserved quantities of constrained mechanical systems.Acta Mechanica,2000,141(3~4):135~148
  • 5[6]Mei Fengxing.Nonholonomic mechanics.ASME,Appl Mech Rev,2000,53(11):283~305
  • 6[7]Mei Fengxiang.Form invariance of Lagrange system.J of Beijing Institute of Technology,2000,9 (2):120 ~ 124
  • 7[8]Mei Fengxiang.Form invariance of Appell equations.Chin Phys,2001,10(3):177~180
  • 8[11]Hojman SA.A new conservation law constructed without using either Lagrangians or Hamiltonians.J Phys A:Math Gen,1992,25:L291~295
  • 9[1]Olver PJ.Applications of Lie Groups to Differential Equations.New York:Springer-Verlag,1996
  • 10[2]Bluman GW,et al.Symmetries and Differential Equations.New York:Springer-Verlag,1989

共引文献81

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部