期刊文献+

多SVM分类器融合的传感器故障容错研究 被引量:1

Study on sensor fault tolerance with multi-classifiers of SVM fusion
在线阅读 下载PDF
导出
摘要 在工业、农业等实际应用领域中,传感器是获取信息的主要工具,而当某个传感器发生故障时,单个决策系统的性能会急剧下降,甚至导致整个系统的瘫痪.为了提高决策系统的容错能力,将多分类器融合的方法应用到此领域.首先利用粗糙集的方法进行特征选择,得到3组不同的约简.再利用模糊输出支持向量机方法,训练出3个分类器.测试样本通过这3个分类器分别给出该样本属于各类的隶属度,再通过均值的融合方法,给出最后的分类决策.将该SVM多分类器融合方法应用于6组UCI标准数据集中,实验表明,传感器出现断路或短路故障时,单个分类器的分类精度急剧下降,但是通过融合的方法,使得最后的分类精度与原始精度基本相当. In some application fields of industry and agriculture, sensor is the main tool for getting information. When some sensor is wrong, the performance of a single decision system will get down sharply, even all the system will collapse, In order to improve the fault tolerance, the multi-classifiers fusion method is introduced into this field. Firstly, 3 different reductions were gotten through rough sets. Then with fuzzy output SVM method, 3 classifiers were trained. The membership to each class of every testing sample was gotten through the above 3 classifiers. With the average value fusion method, the final class was given. In the experiment of 6 UCI standard data sets, it shows when some sensor is open or short, the performance of the single classifier will get down, while with the fusion method, the accuracy is comparable to the original accuracy.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期389-392,共4页 Journal of Harbin Engineering University
关键词 多分类器融合 支持向量机 容错 传感器故障 multi-classifiers fusion support vector machines fault tolerance sensor fault
作者简介 谢宗霞(1981-),女,博士生; 于达仁(1966-),男,教授.
  • 相关文献

参考文献7

  • 1BAUER E,KOHAVI R.An empirical comparison of voting classification algorithms:bagging,boosting and variants[J].Machine Learning,1999,36 (1/2):525-536.
  • 2HU Qinghua,YU Daren,XIE Zongxia.Informationpreserving hybrid data reduction based on fuzzy-rough techniques[J].Pattern Recognition Letters,2006,27(55):414-423.
  • 3LUDMILA I,KUNCHEVA.Fuzzy versus nonfuzzy in combining classifiers designed by boosting[J].IEEE Transactions on Fuzzy Systems,2003,11 (6):729-741.
  • 4DIETTERICH T G.Ensemble methods in machine learning[A].Proceedings of the First International Workshop on Multiple Classifier Systems[C].Cagliari,Italy,2000.
  • 5刘东,葛运建.基于SVM预测器的传感器故障诊断与信号恢复研究[J].传感技术学报,2005,18(2):247-249. 被引量:18
  • 6PAWLAK Z.Rough sets-theoretical aspects of reasoning about data[M].Dordrech:Kluwer Academic,1999.
  • 7XIE Zongxia,HU Qinghua,YU Daren.Fuzzy output support vector machines for classification[A].Advances in Natural Computation:First International Conference[C].Changsha,China,2005.

二级参考文献7

  • 1VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2Neil P Piercy. Sensor Failure Estimators for Detection Filters[J]. IEEE Transactions on Automatic Control, 1999, 37(10): 1553-1558.
  • 3Simani S, Fantuzzi C, Spina P R. Application of a Neural Network in Gas Turbine Control Sensor Fault Detection[C]. In: IEEE International Conference on Control Applications. Trieste, Italy. 1998.
  • 4Smola A J, Scholkoph B. A tutorial on support vector regression[R]. Royal Holloway College, NeuroCOLT Technical Report TR-1998-030, 1998.
  • 5Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machine[A]. Proc. the 1997 IEEE workshop on neural networks for signal processing[C]. In: Amelea Island, FL, 1997, 276-285.
  • 6张晨,韩月秋,陶然.基于改进鲁棒自联想神经网络的传感器故障诊断新方法[J].仪器仪表学报,1999,20(2):170-172. 被引量:9
  • 7刘宜平,沈毅,刘志言.一种基于模糊神经网络的故障分类器及其在多传感器故障诊断中的应用[J].传感技术学报,2000,13(1):38-43. 被引量:12

共引文献17

同被引文献8

  • 1张荣,王勇,杨榕.TM图像中道路目标识别方法的研究[J].遥感学报,2005,9(2):220-224. 被引量:26
  • 2钟路,潘昊,封筠,等.模式识别[M].武汉:武汉大学出版社,2006.1-5.
  • 3LU D,WENG Q. A survey of image classification methods and techniques for improving classification performanee[J]. Remote Sensing, 2007,28 : 823- 870.
  • 4苏金明,王永利.MATLAB7.0(上下册)[M].北京:电子工业出版社,2004.103-108.
  • 5MONADJEMI A, THOMAS B T, MIRMEHDI M. Classification in high resolution images with multiple classifiers[A]. Visualization, Imaging,and Image Processing[C]. 2002.
  • 6INGLADA J. Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features[J]. Science Direct, 2007, 62:236-248.
  • 7范彬,冯云松.支持向量机在红外成像自动目标识别中的应用[J].红外技术,2007,29(1):38-41. 被引量:7
  • 8吕岳,施鹏飞,赵宇明.多分类器组合的投票表决规则[J].上海交通大学学报,2000,34(5):680-683. 被引量:17

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部