期刊文献+

运用神经网络集成估计小样本测验的IRT项目参数 被引量:1

Apply neural network ensemble to estimate IRT item parameters in test of small samples
在线阅读 下载PDF
导出
摘要 针对标准参照测验题库建设中存在的问题,提出了运用广义回归神经网络集成来估计标准参照测验的IRT项目参数的新方法,讨论了建立神经网络集成的理论依据,给出了实现方法,并以单参数的Logistic模型为研究对象进行模拟实验研究.结果表明,在较小考生样本情况下,相对于传统IRT方法,神经网络集成可以得到远远优于它的结果. Aiming at the problem of item pool construction in criterion-referenced test, a new method applying general regression neural network ensemble to estimate IRT item parameter in criterion-referenced test is proposed. The elementary principle that why neural network ensemble can be constructed is demonstrated, as well as and the method about how to construct the network. And simulated experiments are conducted with the research object of one parameter logistic model. The result shows that under the condition of small size of examinees, it is far better than that drawn from conventional IRT parameter-estimation methods.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期36-39,共4页 Journal of Harbin Engineering University
关键词 神经网络集成 项目反应理论 小样本 参数估计 neural network ensemble item response theory small samples parameter-estimation
作者简介 余嘉元(1949-),男,教授,博士生导师 汪存友(1982-),男,硕士研究生
  • 相关文献

参考文献5

二级参考文献17

  • 1谭云兰,丁树良,辛锐铭,冯慧君.基于IRT模型参数的BP神经网络估计[J].计算机工程与应用,2004,40(17):56-57. 被引量:15
  • 2谭云兰,丁树良,辛锐铭.基于IRT模型的BP神经网络降维法参数估计及其应用[J].江西师范大学学报(自然科学版),2004,28(6):485-488. 被引量:9
  • 31.Valiant L G.A Theory of Learnable.Communication of ACM,1984; 27:1134-1142
  • 42.Kearns M,Valiant L G.Learning Boolean Formulae or Factoring.Te- chnical Report TR-1488,Cambridge,MA:Havard University Aiken Computation Laboratory,1988
  • 53.Kearns M,Valiant L G.Crytographic Limitation on Learning Boolean Formulae and Finite Automata.In:Proceedings of the 21st Annual ACM Symposium on Theory of ComputingNew YorkNY:ACM press, 1989:433-444
  • 64.Schapire R E.The Strength of Weak Learnability.Machine Learning, 1990;5:197-227
  • 75.Freund Y.Boosting a Weak Algorithm by Majority.Information and Computation,1995;121(2):256-285
  • 86.Freund Y,Schapire R E.A Decision-Theoretic Generalization of On- Line Learning and an Application to Boosting.Journal of Computer and System Sciences,1997;55(1):119-139
  • 98.Schapire R EFreund YBartlett Y,et al.Boosting the Margin:A New Explanation for the Effectiveness of Voting Methods.The Annals of Statistics,1998;26(5):1651-1686
  • 109.Schapire R E.A Brief Introduction of Boosting.InProceedings of the 16th International Joint Conference on Artificial Intelligence,1999

共引文献323

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部