期刊文献+

基于变化序列的时序数据挖掘技术 被引量:1

Time Series Data Mining Technique Based on Varying Series
在线阅读 下载PDF
导出
摘要 给出了时间序列的变化序列和最近时间子序列的概念.并把最近时间子序列看作是时间序列的信息聚集器。基于这一现点,提出了基于变化序列的时序数据挖掘技术。先把待挖掘的时间序列转换成时间序列的变化序列,然后利用时间序列的变化序列的最近时间子序列隐含的知识,以指导对原时间序列的挖掘,并给出了挖掘算法。最后算例验证了该挖掘方法的可行性和有效性。 The time series varying series and the latest time sub-series are defined. The latest time subseries is regarded as the information collector of the time series. Based on the concept,the time series data mining technique based on time series varying series is presented. Firstly the time series set for mining is converted into its varying series set, and then the information underlying in the latest time sub-series of the time series varying series is used as a guide to excavate the original time series. And mining algorithms are given. Finally,a concrete mining example proves that the method is feasible and effective.
作者 王勇 张新政
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2006年第B07期154-157,共4页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(60461001 60574052)资助项目 广西教育厅科研基金(200547)资助项目。
关键词 时序数据挖掘 变化序列 最近时间子序列 time series data mining varying series latest time sub-series
作者简介 王勇,男,博士,副教授,1963年生,E—mail:wangyong@gxun.cn。
  • 相关文献

参考文献5

  • 1Rosenstein M T,Cohen P R. Concepts from time series[C]//Proc of the Fifteenth National Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence. Madison,United States : AAAI Press, 1998:739-745.
  • 2Povinelli R J. Time series data mining: identifying temporal patterns for characterization and prediction of time series events [D]. Milwaukee, Wisconsin:Faculty of the Graduate School ,Marquette Unlversity,1999.
  • 3Baltzersen J K. Andata: a rough setsattempt to predict stock market approach[D]. Trondheim, Norway: The Norwegian Institute of Technology, University of Trondheim, 1996.
  • 4Bjorvand A T. Time series and rough sets [D].Trondheim, Norway: Department of Computer Systems and Telematics, The Norwegian Institute of Technology, 1996.
  • 5王勇,张新政,高向军.时序规则挖掘[J].计算机工程,2005,31(23):61-62. 被引量:3

二级参考文献4

  • 1Yoon J P, Lee J, Kim S. Trend Similarity and Prediction in Time-series Databases [A]. In: Proc. of SPIE on Data Mining and Knowledge Discovery: Theory, Tools, and Technology Ⅱ. Washington: SPIE,2000:201-212.
  • 2Agrawal R, Faloutsos C, Swami A. Efficient Similarity Search in Sequence Database. Springer Verlag, 1993:69-84.
  • 3Das G, Gunopulous D, Mannila H. Finding Similar Time Series. In:Proc. of 1^st European Symposium on Principles of Data Mining and Knowledge Discovery(PKDD'97), Komorowski J, Zytkow J(Eds.),1997.
  • 4Box G, Jenkins G. Time Series Analysis: Forecasting and Control. San Francisco, CA: Holden-Day, 1970.

共引文献2

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部