期刊文献+

关于在20~6000K温度范围内氰化氢配分函数的研究(英文) 被引量:5

Study of Partition Functions for the Hydrogen Cyanide in the Temperature Range20 ~6000K
在线阅读 下载PDF
导出
摘要 作者在20~6000K温度范围内,将其划分为5个小区间,计算了H^12C^12N及其同位素H^12C^15N和H^13C^14N的总的配分函数.作者将计算的配分函数分别在这5个小区间被拟合到含温度T的四阶多项式内,并在每个区间均得到5个拟合系数.通过这些拟合系数可以快速、准确地获得分子在所研究温度范围内任意温度下的总的配分函数. The total internal partition functions are calculated for temperatures from 20-6000 K for HCN and its isotopomers. The temperature range is divided into five regions and the calculated total intemal partition sum(TIPS) are fit to a four-order polynomial expression in T, and the coefficients are evaluated in five temperature regions. This allows a rapid and accurate calculation of the total intemal partition functions at the temperature from 20-6000 K.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第4期847-851,共5页 Journal of Sichuan University(Natural Science Edition)
基金 TheNationalNaturalScienceFoundationofChina(10574096),TheNationalNaturalScienceFoundationofChinaandCAEP(10376021),TheSpecializedResearchFundfortheDoctoralProgramofHigherEducationofChina(20050610010),TheSpecializedResearchFundfortheDevelopmentProgramofHigherEducationofGuizhouprovince(2005119)
关键词 总配分函数 氰化氢 转动配分函数 振动配分函数 total intemal partition sums hydrogen cyanide rotational partition sums vibrational partitionsurds
作者简介 SONG Xiao-Shu( 1971 - ), female, associate professor. Corresponding author, E-mail: xdyang@scu.edu.cn
  • 相关文献

参考文献13

  • 1Gamache R R, Hawkins R L, Rothman L S. Total Internal Partition Sums in the Temperature Range 70 - 3000 K: Atmo-spheric Linear Molecules[J]. J. Mol. Spectmsc, 1990,142:205.
  • 2Gamache R R, Kennedy S, Hawkins R L, et al. Total internal partition sums for molecules in the terrestrial atmosphere[J]. J. Mol. Struct, 2000,517/518:407.
  • 3Fischer J, Gamache R R. Total internal partition sums for molecules of astrophysical interest[J]. JQSRT, 2002,74:263.
  • 4Fischer J, Gamache R R, Goldman A, et al. Total intemal partition sums for molecular species in the 2000 edition of the HITRAN database[ J ]. JQSRT, 2003,82: 401.
  • 5Rothman L S, Barbe A, Chris Benner D, et al. The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001[J]. JQSRT, 2003,82:5.
  • 6McDowell R S. Rotational partition functions for linear molecules[J]. J. Chem. Phys, 1988; 88: 356.
  • 7McDowell R S. Rotational partition functions for symmetric-top molecules[J ]. J. Chem. Phys, 1990, 93: 2801.
  • 8Watson J K G. The asymptotic asymmetric-top rotational partition function[J ]. Mol. Phys. 1988, 65:1377.
  • 9Martin J M L, Francois J P, Gijbels R. The rotational partition function of the symmetric top and the effect of K doubling thereon[J]. Chem. Phys. Lett, 1991,187:375.
  • 10Fernandez F M, Tipping R H. Accurate analytical expressions for partition functions for all values of temperature[J].Spectrochimica Acta, 1992, 48A: 1283.

同被引文献44

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部