期刊文献+

一种鲁棒回归支持向量机及其学习算法 被引量:6

Robust Regression SVM and Its Learning Algorithm
在线阅读 下载PDF
导出
摘要 为了提高支持向量机的泛化能力,给出了一个鲁棒损失函数,利用它建立了鲁棒支持向量机,并利用对偶原理推导出其对偶优化问题的形式,在此基础上设计了局部梯度算法,在这种算法中每次迭代只改变两个优化变量的值。随后分析了算法的收敛性条件,给出了学习步长的选择依据,最后用一个仿真实例来说明所提出的支持向量机的学习性能,比标准支持向量机具有更好的鲁棒性。 In order to increase the generalization ability of SVM (support vector machine), a robust loss function is given, A robust support vector machine is put forward. The dual optimal problem formation is deduced using a dual theory. A local gradient algorithm is designed, and only two optimal variables are updated in every iteration. The convergence condition of the algorithm is analyzed, and a formula to select learning step size is given using the convergence condition, The simulation results show that the robust support vector machine performs significantly well and it possesses stronger robustness than that of the original support vector machine.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2006年第3期311-314,共4页 Journal of Nanjing University of Science and Technology
基金 浙江省自然科学基金(Y105281)
关键词 结构风险最小化 支持向量机 鲁棒损失函数 局部梯度法 structural risk minimization support vector machine robust loss function local gradient algorithm
作者简介 张浩然(1972-),男,安徽灵璧人,副教授,博士,主要研究方向:机器学习、模式识别及其在信号处理中的应用,E—mail:hyh@zjnu.cn。
  • 相关文献

参考文献7

  • 1Vapnik V N.The nature of statistical learning theory[M].New York:Springer,1995.
  • 2Cherkassky V,Mulier F.Learning from data-Concepts,theory and methods[M].New York:John Wiley Sons,1998.
  • 3Joachims T.Text categorization with support vector machines:learning with many relevant features[EB/ OL].http://citeseer.ist.psu.edu/joachims98text.html,2006-03-29.
  • 4Guyon I,Weston J,Barnhill S.Gene selection for cancer classification using support vector machines[J].Machine Learning,2002,46 (3):389-422.
  • 5Mukherjee S,Osuna E,Girosi F.Nonlinear prediction of chaotic time series using support vector machines[A].Neural Networks for Signal Processing[C].Washington D C:IEEE Press,1997.511-520.
  • 6Vijayakumar S.Sequential support vector classifiers and regression[EB/ OL].http://citeseer.ist.psu.edu/vijayakumar99sequential.html,2006-03-29.
  • 7Mangasarian O L,Musicant D R.Lagrangian support vector machines[J].Journal of Machine Learning Research,2001,1(1):161-177.

同被引文献55

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部