期刊文献+

自然邻点插值在渗流场/应力场构造中的应用 被引量:2

Natural Neighbor Interpolation and Its Application in Formation of Seepage Field/Initial Stress Field
在线阅读 下载PDF
导出
摘要 计算渗流场或初始地应力场的网格一般要比实际结构分析的网格大,因此结构分析时需要将大网格中的渗流场或初始地应力场转换到小的结构分析网格中。若有大网格信息,就可以利用有限元形函数进行转换。但有时只有大网格结点坐标和相应的物理量,此时一般采用加权平均法进行转换,这种转换的精度不是太高。自然邻点插值法是基于给定结点的Voronoi图,通过自然邻点的坐标值构造插值函数,因此特别适合只有结点坐标和相应的物理量,而要将其应用于另一种网格模型的情况。给出了两种自然邻点插值的构造方式及其具体实现步骤。算例表明采用自然邻点插值构造场的精度很高。 As the computation mesh for seepage field or initial stress field is generally bigger than that for real structural analysis, it is necessary in the structural analysis to transform the seepage field or initial stress field from the big mesh into the small mesh. If the information of big mesh is known, the transformation can be done with the shape function of finite element method. But sometimes only the coordinate and its corresponding physical quantity are known, the transformation is then generally done by weighted averaging method, which has a not high accuracy of transformation. Natural neighbor interpolation method constructs the interpolation function with the coordinate values of natural neighbors based on Voronoi diagram, therefore, it especially suits the case where only the coordinate and its corresponding physical quantity are known and the quantity has to be applied to a mesh model of another type. The formation mode and the realization procedure by two natural neighbor interpolation methods are described and the real computation cases show that the natural neighbor interpolation method has a high accuracy in field formation.
机构地区 河海大学
出处 《金属矿山》 CAS 北大核心 2006年第5期49-52,共4页 Metal Mine
基金 国家自然科学基金项目(50379005)。
关键词 自然邻点插值 Sibson插值 Laplace插值 渗流场/初始地应力场 Natural neighbor interpolation, Sibsonian interpolation, Laplace interpolation, Seepage field/ initial stress field
作者简介 余天堂(1971-),男,河海大学土木工程学院,副教授,210098江苏省南京市西康路1号。
  • 相关文献

参考文献13

  • 1钱向东,任青文,赵引.一种高效的等参有限元逆变换算法[J].计算力学学报,1998,15(4):437-441. 被引量:38
  • 2Braun J,Sambridge M.A numerical method for solving partial differential equations on highly irregular evolving grids[J].Nature,1995,376:655-660.
  • 3普雷帕拉塔FP 庄心谷等(译).计算几何导论[M].北京:科学出版社,1990..
  • 4Sukumar N,Moran B,Belytschko T.The natural element method in solid mechanics[J].International Journal for Numerical Methods in Engineering,1998,43:839-887.
  • 5Sukumar N.The natural element method in solid mechanics.Northwestern university (PHd dissertation).1998.
  • 6Sukumar N,Moran B,Yu Semenov A,et al.Natural neighbour Galerkin methods[J].International Journal for Numerical Methods in Engineering,2001,50:1-27.
  • 7朱怀球,吴江航.一种基于Voronoi Cells的C∞插值基函数及其在计算流体力学中的若干应用[J].北京大学学报(自然科学版),2001,37(5):669-678. 被引量:10
  • 8Itai Benjamini,Oded Schramm.Conformal invariance of Voronoi percolation[J].Commun math phys,1998,197:75-107.
  • 9Golias N A,Dutton R W.Delaunay triangulation and 3D adaptive mesh generation[J].Finite elements in analysis and design,1997,25:331-341.
  • 10Beliko V V,Semenov A Y.Non-Sibsonian interpolation on arbitray system of points in Euclidean space and adaptive isolines generation[J].Applied numerical mathematics,2000,32:371-387.

二级参考文献2

共引文献50

同被引文献17

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部