期刊文献+

四种与冠心病相关指标联合诊断冠心病价值评价 被引量:3

EVALUATION OF 4 MARKERS IN THE COMBINING SCREENING TEST FOR CORONARY HEART DISEASE.
在线阅读 下载PDF
导出
摘要 目的:探讨logistic多指标联合诊断试验ROC分析中的应用,评价4种与冠心病发病有关指标在冠心病诊断及联合诊断中的效果。方法:根据疾病状态建立logistic回归模型,通过形成的预测概率或联合预测因子为分析指标,并结合双正态模型建立ROC曲线。结果:通过实例阐述了整个分析过程,并说明了指标对诊断冠心病的有效性,确定了基于联合诊断的最佳工作点。结论:ROC分析中结合logistic回归模型简单有效,尤其适用于有协变量或多指标联合诊断试验的分析评价。 Objective: To explore the application of logistic model in ROC curve analysis, and to evaluate the clinical value and discriminatory power of 4 biornarkers in diagnosing Coronary Heart Disease and determine the Optimal Operating Point (OOP) by using the Receiver Operating Characteristic (ROC) curves. Method: Based on the logistic model, combining predictors or prohahil ities were gained and applied to establish empirical and binomial model ROC curves, Results: An example for prediction of coronary heart disease was presented to illustrate the whole analysis steps. At the same time, the method shows that the HDL and TG were suitable for coronary heart disease screening, and the optimal operating point was determined for the combining screening test. Conclusion: Roc analysis based on the logistic model is easy and convenient, especially using in the screening test with covariates or multiple markers for classification.
出处 《现代预防医学》 CAS 北大核心 2006年第5期723-724,740,共3页 Modern Preventive Medicine
关键词 诊断试验 ROC曲线 冠心病 LOGISTIC模型 双正态模型 Screening test ROC Logistic model Binormal model Coronary heart disease
  • 相关文献

参考文献8

  • 1Copas,J.B.and Corabitt,P.Overestimation of the receiver operating characteristic cure for logistic regression[J].Biometrika,2002,89 (2):315-331.
  • 2邹莉玲,沈其君,陈启光,王文梅.指标联合的ROC曲线分析[J].中国卫生统计,2003,20(5):279-280. 被引量:15
  • 3Metz,C.E,Herman,B.A.and Shen,J.H.Maximumlikelihood estimation of receiver operating characteristic (ROC)curves from continuously-distributed data[J].Statist.Med,1998,17:1033-1053.
  • 4Margares S.Pepe,Tianxi Cai,Zheng Zhang.Combining predictors for classification using the area under the ROC cure[J].UW Biostatistics Working Paper Series,2004.
  • 5刘润幸.使用SPSS作多变量观察值的ROC曲线分析[J].中国公共卫生,2003,19(9):1151-1152. 被引量:128
  • 6陈卫中,倪宗瓒,潘晓平,刘元元,夏彦.用ROC曲线确定最佳临界点和可疑值范围[J].现代预防医学,2005,32(7):729-731. 被引量:208
  • 7MeNeil,B.J.Keeler,E.and Adelstein,S.J.Primer on certain elements of medical decision making[J].New England Journal of Medicine,1975,293:211-215.
  • 8Weinstein,M.C.and Fineberg,H.V.Clinical Decision Analysis[M].Saunders:Philadelphia,1980.

二级参考文献15

  • 1SPSS Inc. SPSS Base 10.0 User's Guide[ M]. USA: SPSS Inc,1999. 431 - 434.
  • 2Wieand HS, Gail MH, james BR, et al. A family of nonparametric statistics for comparing diagnostic markers with paired or unpaired data.Biometrika. 1989.76 : 585-592.
  • 3John QS, Jun SL. Linear combinations of multiple diagnostic markers.Journal of the American statistical association. 1993.88 (424): 1350- 1355.
  • 4Bamber D. The area above the ordinal dominance graph and the area below the receiver operating characteristic graph . Journal of mathematical psychology, 1975, 12: 387-415.
  • 5Cox DR. Snell EJ, Analysis of binary data. 2nd ed London:Chapman & Hall, 1989.
  • 6Gregory Mark. Receiver-operating characteristic (ROC) plots: Fundamental Evaluation Tool in Clinical Medicine [ J ]. Clin Chem,1993, 30 (4): 561 - 567.
  • 7Hanley JA, McNeil BJ. The meaning and use of the area under a receiveroperating characteristic (ROC) curve [J]. Radiology, 1982,143 (4): 29.
  • 8Swets JA. Measuring the accuracy of dianostic system [J]. Science,1988, 240 (4622): 1285.
  • 9Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC)curve [J]. Radiology, 1982: 29-36.
  • 10张克坚,杨振华.应用ROC曲线图评价检验项目的临床准确性[J].江西医学检验,1999,17(2):66-68. 被引量:44

共引文献339

同被引文献27

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部