期刊文献+

基于学习Petri网的网络入侵检测方法 被引量:5

A Detection Method of Network Intrusion Based on Learning Petri Nets
在线阅读 下载PDF
导出
摘要 基于神经网络的入侵检测方法存在学习速度慢,不易收敛,分类能力不足等缺点。采用学习Petri网(LPN)建立了对网络入侵的检测分类方法,该方法在非线性和不连续函数的实现上优于神经网络,实验结果表明:基于LPN的入侵分类相对于相同结构的神经网络具有更高的识别精度以及更快的学习速率。 A method of intrusion detection based on neural network(NN) has flaws of slower learning speed, hardness in converging and deficiency of classifier capability. The learning Petri nets(LPN) were adopted to construct the method of network intrusion detection. LPN is superior to NN in the realization of nonlinear and discontinuous functions. The test result indicates that the classifier based on LPN has better recognizing precision and faster learning speed compared with the classifier based on the same structure NN.
出处 《兵工学报》 EI CAS CSCD 北大核心 2006年第2期269-272,共4页 Acta Armamentarii
关键词 计算机系统结构 入侵检测 学习Petri网 神经网络 computer system architecture intrusion detection learning Petri nets neural network
  • 相关文献

参考文献1

二级参考文献4

  • 1Shen Qing,The Introduction of Pattern Recognition,1995年
  • 2Lin Chuang,Journal of Software,1993年,4卷,4期,33页
  • 3He Xingui,Knowledge Processing and Expert System,1990年
  • 4周奕,Chin J Comput

同被引文献28

  • 1鲍培明.基于BP网络的模糊Petri网的学习能力[J].计算机学报,2004,27(5):695-702. 被引量:87
  • 2张白一,崔尚森.基于规则推理的FPN误用入侵检测方法[J].计算机工程,2006,32(14):119-121. 被引量:6
  • 3原菊梅,侯朝桢,王小艺,吴勤.复杂系统可靠性估计的模糊神经Petri网方法[J].控制理论与应用,2006,23(5):687-691. 被引量:6
  • 4危胜军,胡昌振,孙明谦.基于模糊Petri网的误用入侵检测方法[J].北京理工大学学报,2007,27(4):312-317. 被引量:7
  • 5Ye N,Li X Y,Chen Q,et al.Probabilistic techniques for intrusion detection based on computer audit data[J].IEEE Transaction on Systems, Man, and Cybemetics-Part A : Systems and Humans, 2001, 31(4):266-274.
  • 6Morteza A,Rasool J,Hamid R.SRT-UNNID:a practical solution to real-time network-based intrusion detection using unsupervised neural networks[J].Computers and Security, 2006,25 (6) : 459-468.
  • 7Tadeusz P,Axel T.Data mining and machine learning-towards reducing false positives in intrusion detection[J].Information Security Technical Report, 2005,10(3 ) : 169-183.
  • 8corrected.gz [DB/OL].http ://kdd.ics.uci.edu/databases/kddcup99/kd- dcup99.html.
  • 9Ye N, Li XY, Chen Q, et al. Probabilistic techniques for intrusion detection based on computer audit data [ J ]. IEEE Transaction on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2001, 31 (4): 266-274.
  • 10Morteza A, Rasool J, Hamid R. SRT-UNNID: a practical solution to real-time network-based intrusion detection using unsupervised neural networks [ J]. Computers and Security, 2006, 25 (6) : 459 - 468.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部