期刊文献+

基于S变换模时频矩阵相似度的短时电能质量扰动分类 被引量:58

Classification of Short Duration Power Quality Disturbance Based on Module Time-Frequency Matrixes Similarity by S-Transform
在线阅读 下载PDF
导出
摘要 提出了一种基于S变换模时频矩阵相似度的短时电能质量扰动分类方法。首先,建立各种扰动的标准模时频矩阵,然后计算扰动信号模时频矩阵与标准模时频矩阵的相似度,按照相似度最大的原则将扰动分类。该方法直接利用S变换结果,而不用增加其它算法或变换,原理简单、计算方便。仿真结果显示,该分类方法在不同噪声水平下均能达到满意的分类正确率,是一种有效的短时电能质量扰动分类方法。 A classification method for short duration power quality disturbance (SDPQD) based on similarity of module time-frequency matrixes by S-transform is proposed. At first, the standard module time-frequency matrixes of SDPQD for voltage dips, swells, interruptions, harmonics, oscillatory transients, notches and spikes are constructed, then the similarity of disturbance signal's module time-frequency matrixes to standard module time-frequency matrixes is calculated and according to the principle of maximum similarity the disturbances are classified. The proposed method can directly adopt the results of S-transform when other algorithms or transforms are not to be added, so it is simple in principle and easy to calculate. Simulation results show that with the proposed method a satisfied correctness of identification can be achieved, so it is an effective method to classify the SDPQD.
出处 《电网技术》 EI CSCD 北大核心 2006年第5期67-71,共5页 Power System Technology
关键词 电能质量 S变换 扰动 模时频矩阵 相似度 分类 噪声鲁棒性 Power quality S-transform Disturbances module time-frequency matrixes Similarity Classification Noise robustness
作者简介 刘守亮(1981-),男,硕士研究生,研究方向为电能质量与电力市场; 肖先勇(1968-),男,副教授,从事电能质量分析与控制、电力市场等方面的教学和科研工作; 杨洪耕(1949-),男,教授,从事电能质量分析与控制、电力市场等方面的教学和科研工作.
  • 相关文献

参考文献13

二级参考文献53

  • 1冯飞,余贻鑫.电力系统功率注入空间的动态安全域[J].中国电机工程学报,1993,13(3):14-22. 被引量:29
  • 2唐巍,陈学允.BP算法应用于电力系统暂态稳定分析的新策略[J].电力系统自动化,1997,21(3):47-50. 被引量:10
  • 3[1]Angrisani L, Daponte P, Apuzzo M D. A measument method based on the wavelet transform for power quality analysis[J]. IEEE Trans Power Delivery, 1998, 13(4):990-998.
  • 4[2]Huang S J, et al. Application of morlet wavelets to supervise power system disturbances[J]. IEEE Trans Power Delivery, 1999, 14(1):235-243.
  • 5[3]Gaouda A M,et al. Power quality detection and classification using wavelet-multiresolution signal decomposition[J].IEEE Trans. Power Delivery, 1998, 14(4):1469-1476.
  • 6[4]Application of multiresolution signal decomposition for monitoring short-duration variations in distribution systems[J]. IEEE Trans Power Delivery, 2000, 15(2):478-485.
  • 7[5]Santoso S, Powers E J, et al. Power quality disturbance waveform recognition using wavelet-based neural classifier?Part 1: theoretical foundation, Part 2: application[J]. IEEE Trans Power Delivery, 2000, 15(1):222-235.
  • 8[6]Poisson O, Rioual P, Meunier M. Detection and measurement of power quality disturbances using wavelet transform[J].IEEE Trans Power Delivery, 2000, 15(3):1039-1044.
  • 9[7]Karimi M, Mokhtari H, Iravani R. Wavelet based on-Line disturbance detection for power quality applications[J]. IEEE Trans Power Delivery, 2000, 15(4):1212-1220.
  • 10[8]Vetterli M, Herley C, Wavelets and filter banks: theory and design[J]. IEEE Trans Signal Process, 1992, 40(9):2207-2232.

共引文献747

同被引文献603

引证文献58

二级引证文献615

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部