期刊文献+

带时滞的退化半线性抛物方程的熄灭(英文) 被引量:1

Quenching for Degenerate Semilinear Parabolic Equations with Time Delay
在线阅读 下载PDF
导出
摘要 考虑带时滞的退化半线性抛物方程的熄灭问题.利用正则化方法和上下解技巧,我们得到了上述问题经典解的存在惟一性,同时还证明了存在一个临界长度a*使得上述问题的解u当a<a*时整体存在,而当a>a*时在有限时间内熄灭.进而我们还得到关于临界长度a*的一个简单估计. This paper deals with the quenching problem for degenerate semilinear parabolic equations with time delay. By using regularization method and upper and lower solutions'technique, we obtain the existence of a unique classical solution to the above problem and prove that there exists a critical length α * such that the solution u of the above problem exists globally for α 〈 α * and quenches in finite time for α 〉 α *. Furthermore, we also get a simple estimate on the critical length α *.
作者 陈友朋
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2006年第1期7-13,共7页 Journal of Nanjing Normal University(Natural Science Edition)
基金 Supported Partially by the Research Program of the Natural Science of the Universities in Jiangsu Province(05KJB110144).
关键词 熄灭问题 退化半线性抛物方程 时滞 临界长度 简单估计 quenching problem, degenerate semilinear parabolic equation, time delay, critical length, a simple estimate
作者简介 Biography: Chen Youpeng, born in 1966, doctor, associate professor, majored in nonlinear partial differential equations.E-mail: youpengc@ yahoo, com. cn
  • 相关文献

参考文献1

二级参考文献20

  • 1Pao C V. Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York, 1992.
  • 2Sheng Q and Khaliq A Q. A Compound Adaptive Approach to Degenerate Nonlinear Quenching Problems. Numer Methods for Partial Differential Equations, 1999, 15: 29-47.
  • 3Karawada H. On Solutions of Initial Boundary Problem for u1=uxx+ 1/1-u. Publ RIMS, Kyoto Univ, 1975, 10: 729-736.
  • 4Acker A and Walter W. The Quenching Problem for Nonlinear Partial Differential Equations.Lecture Notes in Math , Vol. 56, Springer, Berlin, 1976.
  • 5Chan C Y Ke L and Vatsala, A S. Impulsive Quenching for Reaction Diffusion Equations. Nonlinear Anal , 1994, 22: 1323-1328.
  • 6Dai Q Y and Gu Y G. A Short Note on Quenching Phenomena for Semiliear Parabolic Equations. J Differential Equations, 1997, 137: 240-250.
  • 7Deng K. Dynamical Behaviour of Solutions of a Semilinear Heat Equation with Nonlocal Singularity. SIAM J Math Anal, 1995, 26: 98-111.
  • 8Gu J S. On Quenching Behaviour of the Solution of a Semilinear Parabolic Equation. J Math Anal Appl, 1990, 151: 58-79.
  • 9Levine H A. Quenching, Nonquenching and Beyound Quenching for Solutions of Some Parabolic Equations. Annali di Mat Pure et Appl , 1989, 155:243-260.
  • 10Chan C Y and Kong P C. Quenching for Degenerate Semilinear Parabolic Equations. Applicable Analysis, 1994, 54:17-25.

同被引文献14

  • 1Pao C V. Nonlinear Parabolic and Elliptic Equations [M] . New York: Plenum Press, 1992.
  • 2Pao C V. Blowing-up of solution for a nonlocal reaction-diffusion problem in combustion theory[J] . Journal of Mathematical and Applications, 1992, 166 (2): 591-600.
  • 3Karawada H. On solutions of initial boundary problem for u t = u xx + 1 / ( 1 - u ) [J]. Publ RI MS Kyoto Univ, 1975, 15 : 729-736.
  • 4Acker A, Walter W. The Quenching Problem for Nonlinear Partial Differential Equations [M]. Berlin: Springer-Verlag, 1976.
  • 5Chan C Y, Ke L, Vatsala A S. Impulsive quenching for reaction diffusion equations [J] . Nonlinear Analysis, 1994, 22 (11) : 1323- 1328.
  • 6Chan C Y, Kong P C. Quenching for degenerate semilinear parabolic equations [J] . Applicable Analysis, 1994, 52 (1) : 17-25.
  • 7Deng K. Dynamical behaviour of solutions of a semilinear heat equation with nonlocal singularity [J] . SI AM J Math Anal, 1995 26 (1): 98-111.
  • 8Ke L, Ning S. Quenching for degenerate parabolic equations [J] . Nonlinear Analysis, 1998, 34 (7) : 1123-1135.
  • 9Pao C V. Quenching problem of a reaction-diffusion equation with time delay [J] . Nonlinear Analysis, 2000, 41 (1) : 133-142.
  • 10Chan C Y, Liu H T. Global existence of solutions for degenerate semilinear parabolic problem [J] . Nonlinear Analysis, 1998, 34 (4) : 617-628.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部