摘要
针对煤矿内因火灾早期识别的困难,采用模糊聚类的方法对煤炭内因火灾发生程度进行划分.并利用遗传算法在大多数情况下可以收敛到全局或近全局最优解的特点,在此基础上提出了一种基于遗传算法的模糊聚类方法以进一步提高聚类的效果.并通过实例验证了该方法的有效性.图2,表1,参11.
The internal-caused fire is a disaster of coal mine. The exact early detection is difficult to obtain. Fuzzy clustering is presented to solve the problem and the degrees of the combustion can be classified clearly. To enhance the effect of fuzzy clustering, a new method of fuzzy clustering based on genetic algorithm was introduced in the paper. The efficiency of the method is demonstrated by the example. 2figs.,1tab.,11refs.
出处
《湖南科技大学学报(自然科学版)》
CAS
北大核心
2006年第1期1-4,共4页
Journal of Hunan University of Science And Technology:Natural Science Edition
基金
教育部博士点基金资助项目(20030290019)
关键词
煤矿
内因火灾
模糊C均值聚类
遗传算法
coal mine
internal-caused fire
fuzzy C-means clustering
genetic algorithm
作者简介
孙继平(1958-),男,山西冀城人,博士,中国矿业大学(北京)教授,博士生导师,主要从事矿井监控的研究和实践.