期刊文献+

一种新的基于SOM的数据可视化算法 被引量:9

A New Data Visualization Algorithm Based on SOM
在线阅读 下载PDF
导出
摘要 SOM(self-organizing map)所具有的拓扑保持特性使之可用来对高维数据进行低维展现,但由于数据间的距离信息在映射到低维空间中固定有序的神经元上时被丢掉了,因此数据的结构通常是被扭曲了的.为了更自然地展现数据的结构,提出了一种新的基于SOM的数据可视化算法——DPSOM(distance-preserving SOM),它能够按照相应的距离信息对神经元的位置进行自适应调节,从而实现了对数据间距离信息的直观展现.特别地,该算法还能自动避免神经元的过度收缩问题,从而极大地提高了算法的可控性和数据可视化的质量. Due to the topology-preserving nature, the SOM(self-organizing map)algorithm can be used to visualize the high-dimensional data. However, due to the fixed regular lattice of neurons, the distance information between the data is lost, and thus the structure of the data may often appear in a distorted form. In order for the map to visualize the structure of the data more naturally, the distance information or the similarity information between the data should be preserved as much as possible on the map directly through the positions of the neurons, along with the topology. To do this, the positions of the neurons should be adjustable on the map. In this paper, a novel position-adjustable SOM algorithm, i.e., DPSOM (distance-preserving SOM), is proposed, which can adaptively adjust the positions of the neurons on the map according to the corresponding distances in the data space and thus can visualize the structure of the data naturally. What's more, the DPSOM algorithm can automatically avoid the excess contraction of the neurons without any additional parameter, thus greatly improving the controllability of the algorithm, and the quality of data visualization.
作者 邵超 黄厚宽
出处 《计算机研究与发展》 EI CSCD 北大核心 2006年第3期429-435,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60443003)~~
关键词 数据可视化 SOM MDS Himberg收缩模型 位置可调SOM DPSOM DPSOM data visualization SOM MDS Himberg' s contraction model position-adjustable SOM
作者简介 邵超,1977年生,博士研究生,主要研究方向为人工神经网络、机器学习、数据可视化等.(sc_flying@163.com) 黄厚宽,1940年生。教授,博士生导师。主要研究方向为人工智能、机器学习、数据仓库、数据挖掘、多智能体系统等.
  • 相关文献

参考文献20

  • 1D. Keim, D, Ankerst. Visual data mining and exploration of large databases. The 5th European Conf. Principles and Practice of Knowledge Discovery in Databases ( PKDD'01 ), Freiburg,Germany, 2001.
  • 2D. A. Keim, Information visualization and visual data mining.IEEE Trans. Visualization and Computer Graphics, 2002, 8( 1 ) :1-8.
  • 3D. A. Keim. Designing pixel-oriented visualization techniques:Theory and applications. IEEE Trans. Visualization and Computer Graphics, 2000, 6(1): 59-78.
  • 4E. Kandogan. Visualizing multi-dimensional clusters, trends, and outliers using star coordinates. In: Proe, 7th ACM SIGKDD Int'l Conf, Knowledge Discovery and Data Mining. New York: ACM Press, 2001. 107- 116.
  • 5A. Naud, W. Duch. Interactive data exploration using MDS mapping. The 5th Conf. Neural Networks and Soft Computing,Zakopane,Poland, 2000.
  • 6J. X. Z, Li. Visualization of high-dimensional data with relational perspective map. Information Visualization, 2004, 3(1) : 49- 59.
  • 7T. Kohonen. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 1982, 43 ( 1 ) : 59 - 69.
  • 8M. Rubio, V. Gimnez. New methods for self-organising map visual analysis. Neural Computation and Applications, 2003, 12(3/4): 142-152.
  • 9D. Merkl, A. Rauber. Alternative ways for cluster visualization in self organizing maps. The Workshop on Self-Organizing Maps(WSOM' 97), Helsinki University of Technology, 1997.
  • 10D. Wang, H. Ressom, M. Musavi, et al. Double self-organizing maps to cluster gone expression data. The 10th European Symposium on Artificial Neural Networks (ESANN' 02), Bruges,2002.

同被引文献134

引证文献9

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部