期刊文献+

Zoom-FFT的改进、频谱反演与时-频局部化特性 被引量:7

Improvement and Spectrum Inversion for Zoom-FFT and It’s Time-Frequency Localization Functions
在线阅读 下载PDF
导出
摘要 回顾了经典连续分段序列Zoom-FFT方法.定义了时间分段序列的占空比Rms.分析了在实际应用中对Rms<1的时间分段序列的Zoom-FFT处理的需求并建立了处理这种序列的新方法.提出并证明了Rms为任意值的Zoom-FFT频谱反演回实际频谱的理论公式和修正公式.给出了对跳频信号进行Rms=1的Zoom-FFT处理和对话带信号进行Rms<1的Zoom-FFT处理并反演回实际频谱的例子.证明Zoom-FFT方法对解决信号快速搜索和粗分析与信号细节分析的矛盾有实用价值,间断分段序列的Zoom-FFT进一步提高了分析效率.最后讨论了Zoom-FFT具有类似于小波变换的时-频局部化特性问题. The classic Zoom-FFT, which is for continues sections of signal sequence, is reviewed. A novel method for Zoom-FFT,which is used for disconnected sections of signal sequence noted as Rms〈 1 ,is offered. The algorithm and the computing cost of it are discussed. A formula for the spectrum inversion form a Zoom-FFT spectrum under onto the practical spectrum from which the former is imaged is established and proved. Examples of application of Zoom-FFT for hopping-frequency signals in HF band and inversion of the Zoom-FFT spectrum of disconnected sections of six-tone signals in voice band are offered. The new Zoom-FFT method will be useful for resolving the contradiction between quickly searching for signals and precisely analyzing signals in practical engineering. The time-frequency localization function of Zoom-FFT, similar to that of wavelet analysis,is stated and analyzed.
作者 罗利春
机构地区 北京
出处 《电子学报》 EI CAS CSCD 北大核心 2006年第1期77-82,共6页 Acta Electronica Sinica
基金 "十五"国防预研基金(No.41101040102)
关键词 信号分析与处理 FFT Zoom—FFT 频谱反演 时-频局部化 signal analysis FFT FFT Zoom-FFT spectrum inversion time-frequency localization
作者简介 罗利春 男,1959年生于四川,博士.研究兴趣是电子侦察信号分析、电磁信号方向反演、电磁理论与工程等.
  • 相关文献

参考文献12

  • 1C W Nawrocki.ZOOM FFT-An Approximate Vernier Frequency Algorithm[R].TM-SA2201-584-72.NUSC.22 Nov.1972.
  • 2A H Nuttall.An Approximate Fast Fourier Transform Technique for Vernier Spectral Analysis[R].NUSC,TR 4767.1974.
  • 3R C Y Yip.Some aspects of the zoom transform[J].IEEE Trans on Computers,1976,25(3):287-296.
  • 4J Morlet,G Arenst,E Fourgeau,D Giard.Wave propagation and sampling theory-Part I:Complex signal and scattering in multilayered media[J].Geophsics,1982,47(2):203-221.
  • 5I Daubechies.Where do wavelet come from?-a personal point of view[J].Proc of IEEE,1996,84(4):510-513.
  • 6I Daubechies.Time-frequency localization operators:a geometric phase space approach[J].IEEE Trans IT,1988,34(4):605-612.
  • 7I Daubechies.The wavelet transform,time-frequency localization and signal analysis[J].IEEE Trans IT,1990,36(5):605-612.
  • 8I Daubechies.小波十讲[M].李建平,杨万里,译.北京:国防工业出版社,2004.9-55.
  • 9Luo Lichun,Xiao Xianci.Aligning signal harmonics to DFT grid[A].The Proceeding of 2003 IEEE Antenna and Propagation Society International Symposium[C].Columbus,OH,USA:IEEE,2003.199-202.
  • 10J J Clark,A L Yuille.Data fusion for sensory information processing systems[M].Kluwer Academic Publishers,1990.17-38.

二级参考文献15

  • 1Soliman S S, Hsun S Z. Signal Classification Using Statistical Moments[J]. IEEE Trans Com, 1992,d0(5) :908 - 916.
  • 2Azzouz E E, Nandi A K. Autonmatic Modulation Recognition of Communication Signals [M]. Boston: Kluwer Aca. Pub, 1996.
  • 3Beidas B F, Weber C L. Higher-Onter Correlation-Based Approach to Modulation Classitication of Digitally Frequency-Modulaled Signals[J]. IEEE Journal on Selected Areas in Com. 1995,13 (1):89- 101.
  • 4Kim K, Polydoros A. Digital Modulation Classification : The BPSK versus QPSK Case [ A ]. IEEE, Inc: MILCOM 88 Conf Record [ C ].USA : IEEE, 1988.2:431 - 436.
  • 5Lay N E, Polydoros A. Modulation Classification of Signal in Unknown ISI Environments [A]. IEEE, Inc: MILCOM 95 Conference Record[C]. USA: IEEE, 1995.170 - 174.
  • 6Van Trees H L. Detection, Estimation, and Modulation Theory, Pt. I[M]. New York : John Wiley&Sons, Inc. 1968.
  • 7Srinath M D, Rajasekaran P K. An Introduction to Statistical Signal Processing with Applications [M]. New York:Wiley &Sons, 1979.
  • 8Poor H V. An Introduction to Signal Detection and Estimation[ M]. New York : Springer-Verlag, 1994.
  • 9Kay S M. Fundamentals of Statistical Signal Processing, Vol. Ⅱ: Detec-tion Theory [J].New Jersey: Prentice Hall FFR, 1998 Bennett W R.Method of solving noise problems. Proceedings of 1RE, 1956,44( 5 ) :633.
  • 10Raheli R, Polydoros A. Per-Survivor Processing: A General Approach to MLSE in Uncertain Environments [ J ]. IEEE Trans. on Com, 1995,43(2/3/4) :354 - 364.

共引文献1

同被引文献145

引证文献7

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部