期刊文献+

基于提升小波和神经网络的超高压电网故障类型识别 被引量:5

Fault classification for UHV grids by using lifting wavelet and neural network
原文传递
导出
摘要 电力调度中心为进一步提高故障类型识别率和计算速度,利用提升小波和BP网络构造了新的小波神经网络故障识别模型,应用db5提升小波对故障电流进行分解,将分解到的(0,375)Hz频率段的系数输入到BP神经网络;为了提高算法的收敛速度,采用共轭梯度法训练该神经网络。通过ATP仿真及华东电网实际故障录波数据的测试,结果表明该模型具有很高的识别率和收敛速度。 To further improve the fault classification rate and calculation speed, a novel fault classification model using the lifting wavelet and BP network was developed. The coefficients of the fault current in the low frequency band between 0 and 375 Hz that decomposed by db5 lifting wavelet were put into the BP neural network, at the same time, the conjugate gradient method was adopted to train the network in order to improve the convergence speed of the algorithm. ATP simulation and tests of the real recording oscillograph data of fault occurred in East China Power Grid prove that the model has the advantages of high classification rate and convergence speed.
出处 《华东电力》 北大核心 2006年第2期29-33,共5页 East China Electric Power
关键词 故障诊断 故障类型识别 录波数据 BP网络 提升小波 共轭梯度法 fault diagnosis fault classification recording oscillograph data of fault BP network lifting wavelet conjugate gradient method
作者简介 王忠民(1968-),男,硕士,主要研究方向为电力系统继电保护及其软件工程。
  • 相关文献

参考文献7

  • 1Huisheng Wang,Keerthipala W W L. Fuzzy-neuro approach to fault classification for transmission line protection [ J ],IEEE Transactions on Power Delivery, 1998, 13 (4) :1093-1104.
  • 2Mo F, Kinsner W. Prebabilistic neural networks for power line fault classification. Electrical and Computer Engineering[ C ], IEEE Conference on Electrical and Computer Engineering, Canadian : 1998. 585-588.
  • 3毛鹏,孙雅明,张兆宁.具有冗余神经元神经网络模型系统的输电线路故障测距的研究[J].中国电机工程学报,2000,20(7):28-33. 被引量:15
  • 4Jacek Stepien, Tomasz P. Zielinski Signal Denoising Using Line - Adaptive Lifting Wavelet Transform[ J]. IEEE Instrumentation and Measurement Technology Conference. 2001(5) :21-23.
  • 5Fuxong Sun, Dong Sun, Zhixin Yu, Tianshu Huang. The fast image fusion based on a lifting wavelet algorithm [ C ].Fifth World Congress on Intelligent Control and Automation,2004.4112-4116.
  • 6Mladen Kezunovic, Igor Rikalo, et al.. High -speed Fault Detection and Classification with Neural Nets [ J ]. Eletric power system research, 1995,34(2) : 109-116.
  • 7Mahanty R N, Dutta P B Gupta. Application of RBF neural network to fault classification and location in transmission lines [ J ] . IEE Proceedings on Generation, Transmission and Distribution, 2004,151 (2) :201-212.

二级参考文献7

共引文献14

同被引文献89

引证文献5

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部