期刊文献+

螺旋X-CT三维成像技术在口腔种植定位中的应用 被引量:6

The Application of X-CT 3-D Imaging Technology in Dental Implantation Orientation
在线阅读 下载PDF
导出
摘要 目的建立螺旋X-CT图像三维重建系统,进行颌骨的三维形态、骨量、密度分析和手术设计,由此制定种植外科手术计划,实现CT三维成像在口腔种植的手术仿真及导航。方法将螺旋X-CT成像技术与计算机图形、图像学原理和三维可视化原理相结合,利用口腔X线CT序列切片,重构三维实体并获得多平面重组图像,根据图像信息,计算颌骨的骨密度,进行种植动态模拟设计,建立牙种植导航系统。结果该成像技术对种植的颌骨牙槽骨高度、宽度、形状、骨缺损的准确位置、骨质的密度、骨皮质和骨松质的比例、下颌管的走行、切牙管的位置和大小、颏孔的位置、鼻腔底和上颌窦底的位置和形态等重要结构均能得到良好显示。为人工牙种植术前的手术方案设计提供了放射学的颌骨评估基础,建立基于计算机辅助设计、CT图像三维重建口腔虚拟种植导航系统,指导了临床口腔种植体定位设计。结论螺旋X-CT三维成像技术在口腔种植定位中的应用,极大地提高手术的准确性,种植手术的风险大大减少,达到了牙种植体的智能设计与智能种植,提高牙种植的安全性。 Objective To achieve the 3D reconstruction from CT slices so as to analyze the bone volume and the bone density of the jaw, and design the operation implantation. Methods Jointed spiral X-CT imaging technology with computer graphics and image theory, also with 3D visualization theory, the oral 3D object was reconstructed and the multi-surface reformed image was obtained from the oral X-radial CT slices, then the implantation was designed dynamically, and navigation system of implantation was founded finally. Results The Application of X-CT 3-D Imaging Technology to Dental Implantation Orientation shows important anatomic structures of jaw bone such as the height and the width of the alveolar bone, mandible canal, incisor canal, sinus, etc. It provides jaw conditions for the implantation design. Conclusion The Application of X-CT 3-D Imaging Technology to Dental Implantation Orientation raises the accuracy of the operation greatly and reduces the risk of the operation. The intelligent design and intelligent implantation can raise the safety of the dental implantation.
出处 《广东牙病防治》 2006年第1期19-22,共4页 Journal of Dental Prevention and Treatment
关键词 螺旋X-CT口腔种植定位 计算机辅助导航 骨缺损 人工牙种植术 Spiral X-CT Dental implantation orientation Computer-assisted navigation
  • 相关文献

参考文献5

二级参考文献58

  • 1Keppel, E. Approximating complex surfaces by triangulation of contour lines. IBM Journal of Research and Development, 1975, 19(1):2~11.
  • 2Fuchs, H. Optimal surface reconstruction from planar contours. Communications of the ACM, 1977,20(10):693~702.
  • 3Ekoule, A.B. A triangulation algorithm from arbitrary shaped multiple planar contours. ACM Transactions on Graphics, 1991,10(2): 182~191.
  • 4Herman, G.T, Liu, H.K. Three-Dimensional display of human organs form computed tomography. Computer Graphics & Image Processing, 1979,9(1):1~29.
  • 5Lorensen, W.E., Cline, H.E. Marching cubes: a high resolution 3D surface construction algorithm. Computer Graphics, 1987, 21(4):163~169.
  • 6Wallin, A. Constructing isosurfaces from CT data. IEEE Computer Graphics & Application, 1991,11(5):28~33.
  • 7Schroeder, W.J., Zarge, J.A., Lorensen, W.E., Decimation of triangle meshes. Computer Graphics, 1992,26(2):65~70.
  • 8Shu, R., Zhou, C., Kankanhalli, M.S., Adaptive marching cubes. The Visual Computer, 1995,11(4):202-217.
  • 9Montani, C., Scateni, R., Scopigno, R. Discretized marching cubes. In: Bergeron, R.D., Kaufman, A.E., eds. Proceedings of the Visualization '94, 1994. 281~287.
  • 10Wilhelms, J., VanGelder A. Octree for faster isosurface generation. ACM Transactions on Graphics, 1992,11(3):201~227.

共引文献90

同被引文献100

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部