期刊文献+

结构随机响应概率密度演化分析的数论选点法 被引量:41

STRATEGY OF SELECTING POINTS VIA NUMBER THEORETICAL METHOD IN PROBABILITY DENSITY EVOLUTION ANALYSIS OF STOCHASTIC RESPONSE OF STRUCTURES
在线阅读 下载PDF
导出
摘要 密度演化方法可以直接获取结构的线性和非线性响应概率密度函数解答及其演化过程.当结构参数与激励中含有多个随机变量时,在多维随机变量空间中的离散代表点选点规则对密度演化分析的精度和效率至关重要.基于高维数值积分的数论方法,建议了多维随机变量空间的数论选点方法.利用多维随机变量空间的联合概率密度函数的球对称性或近似辐射衰减性质,对数论方法给出的单位超立方体中的分布点集进行筛选,可大幅度减少选点数目,从而将具有多个随机变量的结构随机响应分析问题计算工作量降低到与单一随机变量结构随机响应分析问题相当的水平. The newly developed probability density evolution method (PDEM) is capable of capturing instantaneous probability density function and its evolution of linear and/or nonlinear stochastic response of structures. In the occasions that multiple random parameters are involved in the structural properties and external excitations, the strategy of selecting representative points required in the PDEM is of paramount importance to the accuracy and efficiency. Enlightened by the Number Theoretical Method successfully employed in high-dimensional numerical integration, the strategy of selecting points via Number Theoretical Method is proposed in the present paper, Further, making use of the spherically symmetric properties or the radial attenuation properties of the joint probability density function, the points scattered over the multi-dimensional hypercube selected by the Number Theoretic Method are sieved once again such that only the points inside the multi-dimensional hyper-ball are retained. With the proposed strategy of selecting points, the stochastic response analysis involving multiple random parameters is almost as efficient as the problem involving only one single random parameter.
作者 陈建兵 李杰
出处 《力学学报》 EI CSCD 北大核心 2006年第1期134-140,共7页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家创新研究群体科学基金(50321803)国家自然科学基金(10402030)资助项目.~~
关键词 随机结构 概率密度演化方法 随机变量 高维积分 数论方法 stochastic structures, probability density evolution method, high-dimensional numerical integration, Number Theoretical Method
作者简介 E—mail:chenjb@mail.tongji.edu.cn
  • 相关文献

参考文献15

  • 1Belytschko T,Liu WK,Moran M.Nonlinear Finite Elements for Continua and Structures.John Wiley & Sons Ltd,2000.
  • 2Shinozuka M.Monte-Carlo solution of structural dynamics.Computers & Structures,1972,2:855~874
  • 3Kleiber M,Hien TD.The Stochastic Finite Element Method:Basic Perturbation Technique and Computer Implementation.Chishcester:John Wiley & Sons,1992
  • 4Ghanem R,Spanos PD.Stochastic Finite Element:A Spectral Approach.Berlin:Springer-Verlag,1991
  • 5Liu WK,Belytschko T,Mani A.Probability finite elements for nonlinear structural dynamics.Computer Methods in Applied Mechanics and Engineering,1986,56:61~81
  • 6Iwan WD,Huang CT.On the dynamic response of nonlinear systems with parameter uncertainty.International Journal of Non-Linear Mechanics,1996,31(5):631~645
  • 7Anders M,Hori M.Stochastic finite element method for elasto-plastic body.International Journal for Numerical Methods in Engineering,1999,46:1897~1916
  • 8Frangopol DM,Lee YH,Willam KJ.Nonlinear finite element reliability analysis of concrete.Journal of Engineering Mechanics,1996,122(12):1174~1182
  • 9Chen J J,Duan BY,Zeng YG.Study on dynamic reliability analysis of the structures with multi-degree-of-freedom.Computers & Structures,1997,62(5):877~881
  • 10Elishakoff I,Ren Y J,Shinozuka M.Variational principles developed for and applied to analysis of stochastic beams.Journal of Engineering Mechanics,1996,122 (6):559~565

二级参考文献23

  • 1李杰,陈建兵.随机结构非线性动力响应的概率密度演化分析[J].力学学报,2003,35(6):716-722. 被引量:65
  • 2李杰.随机结构分析的扩阶系统方法(Ⅰ)——扩阶系统方程[J].地震工程与工程振动,1995,15(3):111-118. 被引量:12
  • 3严加安.测度论讲义[M].北京:科学出版社,2000.40-49.
  • 4张炳根 赵玉芝.科学与工程中的随机微分方程[M].北京:海洋出版社,1981..
  • 5Shinozuka M. Probabilistic modeling of concrete structures. Journal of Engineering Mechanics, ASCE, 1972, 98:1433-1451.
  • 6Kleiber M, Hien TD. The Stochastic Finite Element Method. Chishcester: John Wiley & Sons, 1992.
  • 7Hisada T, Nakagiri S, Stochastic finite element method developed for structural safety and reliability. In: Proc.3rd Int Conf on Structural Safety and Reliability, 1981,395-408.
  • 8Ghanem R, Spanos PD. Polynomial chaos in stochastic finite elements. Journal of Applied Mechanics, 1990, 57:197-202.
  • 9Jensen H, Iwan WD. Response of systems with uncertain parameters to stochastic excitation. Journal of Engineering Mechanics, 1992, 118 (5): 1012-1025.
  • 10Elishakoff I, Ben Y J, Shinozuka M. Variational principles developed for and applied to analysis of stochastic beams.Journal of Engineering Mechanics, 1996, 122 (6): 559-565.

共引文献54

同被引文献375

引证文献41

二级引证文献234

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部