期刊文献+

基于网格技术的高精度聚类算法 被引量:11

A Grid-based Improving Clustering Quality Algorithm
在线阅读 下载PDF
导出
摘要 为了提高基于网格技术的聚类精度,提出了利用低密度单元中的点到高密度单元中心的距离作为判断聚类边界点和孤立点的技术,开发了HQGC算法。实验表明,该算法能识别任意形状的聚类,聚类的精度高、运行速度快、可扩展性好。 In order to improve the quality of grid-based clustering, the paper presents a technique of distinguish between outliers and boundary points of clusters, which uses distance fi'om point of a sparse cell to the center of the dense cell as criterion function, and develops HQGC algorithm using this technique. The experimental results show that it can discover arbitrary shapes of clusters, the accuracy of clustering results of HQGC is high, with the merit of only requiring one data scan, HQGC is efficient with its run time being linear to the size of the input data set, and scale well.
出处 《计算机工程》 CAS CSCD 北大核心 2006年第3期12-13,98,共3页 Computer Engineering
基金 国家自然科学基金资助项目(69803014)
关键词 聚类 网格 算法 精度 Clustering Grid Algorithm Accuracy
作者简介 邱保志(1964-),男,博士生、副教授,主研方向:数据挖掘。E-mail:bzqiu@zzu.edu.cn 沈钧毅,教授、博导。
  • 相关文献

参考文献5

  • 1Agrawal R,Gehrke J.Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications[C].Proc.of the ACM SIGMOD Int'l Conference on Management of Data,Seattle,Washington,1998-06:94-105.
  • 2Hinneburg A,Keim D A.Optional Grid-clustering:Towards Breaking the Curse of Dimensionality in High-dimensional Clustering[C].Proc.of the 25th VLDB Conf.,Edinburgh,Scotland,1999:506-517.
  • 3Zhao Yanchang,Song Junde.GDILC:A Gride-based Densith-isoline Clustering Algorithm[C].Proc.of 2001 Int'l Conf.on Info-tech and Info-net,Beijing,China,IEEE 2001:140-145.
  • 4Eden W M,Chow T W S.A New Shifting Grid Clustering Algorithm[J].Pattern Recognition,2003,37(3):503-514.
  • 5Hsu Chihming,Chen Mingsyan.Subspace Clustering of High Dimensional Spatial Data with Noise[C].Advanced in Knowledge Discovery and Data Mining:8th Pacific-Asia Conference,2004:31-40.

同被引文献76

引证文献11

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部