期刊文献+

■型三能级原子纠缠态的制备 被引量:1

Preparation of Entangled States for Many ■-type Three-level Atoms
在线阅读 下载PDF
导出
摘要 研究在热腔场中制备Ξ型三能级原子最大纠缠态的方案.利用多个全同三能级原子同时和一个单模腔场的大失谐相互作用来制备三能级原子最大纠缠态,可忽略腔场热作用和腔延迟作用的影响.文中还研究在热腔场中制备四能级原子最大纠缠态的方案. A scheme for preparation of the maximal entangled states for Ξ-type three-level atoms in a thermal cavity is proposed. Because of preparing the maximal entangled states by the simultaneous nonresonant interaction between many uniform multilevel atoms and a single-mode cavity, the thermal effects and the decay of the cavity are all eliminated. It also suggests a scheme for preparation of the maximal entangled states for four-level atoms in a thermal cavity.
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第1期41-43,52,共4页 Journal of Fujian Normal University:Natural Science Edition
基金 福建省自然科学基金资助项目(A0210014)
关键词 三粒子W态 最大纠缠态 大失谐相互作用 three-partlcle W state the maximal entangled state highly detuned interaction
作者简介 陈美香(1979-),女,福建龙岩人,硕士研究生.
  • 相关文献

参考文献8

二级参考文献19

  • 1Michael J W H.Univesal geometric approach to uncertainty,entropy,and information[J].Phys.Rev.(A),1999,59(4):2602-2615.
  • 2Shannon C E,Weaver W.The Mathematical Theory of Communication[M].Urbana:The University of Illinois Press,1963.81-96.
  • 3Orlowski A.Classical entropy of quantum states of light [J].Phys.Rev.(A),1993,48(1):727-731.
  • 4Meystre P,Zubairy M S.Squeezed states in the Jaynes-Cummings model [J].Phys.Rev.(A),1982,89A(8):390-392.
  • 5Uffink J B M,Hilgevoord J.Uncertainty principle and uncertainty relation[J].Found.Phys.,1975,15(9):925-944.
  • 6Beckner W.Inequalities in Fourier anjalysis[J].Ann.Math.,1975,102(2):159-182.
  • 7Bialyncki-Birula I,Mycielski J.Uncertainty relations for information entropy in wave mechanics[J].Commun.Math.Phys.,1975,44(2):129-132.
  • 8Zheng S B,Opt Commun,1997年,138卷,317页
  • 9Guo G C,Phys Lett.A,1996年,223卷,332页
  • 10闫珂柱,孔祥和,夏云杰.奇偶相干态的Wehrl熵和Shannon熵[J].光学学报,1998,18(6):717-721. 被引量:12

共引文献5

同被引文献16

  • 1陈美英,林秀敏,陈志华.在腔场中两原子共生纠缠度的变化及最大纠缠态的制备[J].福建师范大学学报(自然科学版),2007,23(1):42-45. 被引量:2
  • 2Wootters W K, Zurek W H. A single quantum cannot be cloned[J]. Nature, 1982, 299:802-803.
  • 3Buzek V, HUlery M. Quantum copying: beyond the no-cloning theorem[J]. Phys Rev A, 1996, 54 (3): 1844 -1852.
  • 4Duan L M, Guo G C. Probabilistic cloning and identification of linearly independent quantum states LJJ. Phys Rev Lett, 1998, 80 (22): 4999-5002.
  • 5Bru 13 D, Cinchetti M, D'Ariano G M, et al. Phase-covariant quantum cloning[J]. Phys Rev A, 2000, 62: 012302.
  • 6D'Ariano G M, Martini F D, Sacchi M F. Continuous variable cloning via network of parametric gates [J]. Phys Rev Lett, 2001, 86 (5):914-917.
  • 7Du J, Durt T, Zou P, et al. Experimental quantum cloning with prior partial information [J]. Phys Rev Lett, 2005, 94: 040505.
  • 8Niu C S, Griffiths R B. Two-qubit copying machine for economical quantum eavesdropping[J]. Phys Rev A, 1999, 60 (4):2764-2776.
  • 9Murao M, Plenio M B, Vedral V. Quantum-information distribution via entanglement[J]. Phys Rev A, 2000, 61 :032311.
  • 10Dur W, Cirac J I. Multiparty teleportation[J]. J Mod Opt, 2000, 47 (2/3): 247-251.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部