期刊文献+

一个求解次短和渐次短路径的实用算法 被引量:5

A PRACTICAL ALGORITHM FOR THE SECOND AND THIRD SHORTEST-PATH PROBLEM
在线阅读 下载PDF
导出
摘要 求解第 k 短路径问题在决策支持系统和咨询系统中具有广泛的用途,本文基于 Dijkstra 算法,给出了一个求解次短路径和渐次短路径的算法,并且分析了算法的时间复杂度和空间复杂度。 The k shortest-path problem is widely practical in decision support system and consuhation system. In this paper, based on the Dijkstra's algorithm ,we give a algorithm to solve the second and third shortest-path problem. The time complexity and space complexity of the algorithm also have been discussed.
出处 《计算机应用与软件》 CSCD 北大核心 2006年第1期94-96,共3页 Computer Applications and Software
关键词 最短路径 第k短路径 次短路径 渐次短路径 时间复杂度 空间复杂度 Shortest path The k shortest path The second shortest path The third shortest path Time complexity Space complexity
作者简介 陈文兰,硕士,主研领域:计算机网络。
  • 相关文献

参考文献10

  • 1E. W. Dijkstra, A note on Two Problem in connexion with graphs, Numeric Mathematics 1 (1959) ,269 -271.
  • 2Stuart E. Dreyfus,An Appraisal of Some Shortest-Path Algorithms. Operations Research, 17 ( 1969 ) ,395 - 412.
  • 3Luis C. Dias and Joao N. Climaco, Shortest path problems with partial information:Models and algorithms for detecting dominance, European Journal of Operation Research, 121 (2000), 16 - 31.
  • 4Narsingh Deo and Chi-yin Pang, Shortest-Path Algorithms:Taxonomy and Annotation. Networks, Vol. 14 (1984) ,275 - 323.
  • 5Yen JY. Finding the k shortest loopless paths in a network. Management Science 17( 1971 ) ,712 - 16.
  • 6Katoh N. , Ibaraki T. , Mine H. , An efficient algorithm for k shortest simple paths. Networks, 12 (1982) ,411 - 427.
  • 7Eppstein D. Finding the k shortest paths,SIAM Journal of Computing,28 ( 1998 ),652 - 673.
  • 8袁红涛,朱美正.K优路径的一种求解算法与实现[J].计算机工程与应用,2004,40(6):51-53. 被引量:26
  • 9Yen-Liang Chen Hsu-Hao Yang,Finding the First K shortest paths in a time-wlndow network Computers & Operations Research, 31 ( 2004),499 -513.
  • 10柴登峰,张登荣.前N条最短路径问题的算法及应用[J].浙江大学学报(工学版),2002,36(5):531-534. 被引量:89

二级参考文献3

共引文献102

同被引文献38

引证文献5

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部